This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub shiomusubi496/library
#include "template/func.hpp"
#pragma once #include <bits/stdc++.h> #include "macros.hpp" #include "alias.hpp" template<class T, class U, class Comp = std::less<>> inline constexpr bool chmin(T& a, const U& b, Comp cmp = Comp()) noexcept(noexcept(cmp(b, a))) { return cmp(b, a) ? a = b, true : false; } template<class T, class U, class Comp = std::less<>> inline constexpr bool chmax(T& a, const U& b, Comp cmp = Comp()) noexcept(noexcept(cmp(a, b))) { return cmp(a, b) ? a = b, true : false; } inline constexpr ll gcd(ll a, ll b) { if (a < 0) a = -a; if (b < 0) b = -b; while (b) { const ll c = a; a = b; b = c % b; } return a; } inline constexpr ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } inline constexpr bool is_prime(ll N) { if (N <= 1) return false; for (ll i = 2; i * i <= N; ++i) { if (N % i == 0) return false; } return true; } inline std::vector<ll> prime_factor(ll N) { std::vector<ll> res; for (ll i = 2; i * i <= N; ++i) { while (N % i == 0) { res.push_back(i); N /= i; } } if (N != 1) res.push_back(N); return res; } inline constexpr ll my_pow(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res *= a; b >>= 1; a *= a; } return res; } inline constexpr ll mod_pow(ll a, ll b, ll mod) { assert(mod > 0); if (mod == 1) return 0; a %= mod; ll res = 1; while (b) { if (b & 1) (res *= a) %= mod; b >>= 1; (a *= a) %= mod; } return res; } inline PLL extGCD(ll a, ll b) { const ll n = a, m = b; ll x = 1, y = 0, u = 0, v = 1; ll t; while (b) { t = a / b; std::swap(a -= t * b, b); std::swap(x -= t * u, u); std::swap(y -= t * v, v); } if (x < 0) { x += m; y -= n; } return {x, y}; } inline ll mod_inv(ll a, ll mod) { ll b = mod; ll x = 1, u = 0; ll t; while (b) { t = a / b; std::swap(a -= t * b, b); std::swap(x -= t * u, u); } if (x < 0) x += mod; assert(a == 1); return x; }
#line 2 "template/func.hpp" #include <bits/stdc++.h> #line 2 "template/macros.hpp" #line 4 "template/macros.hpp" #ifndef __COUNTER__ #define __COUNTER__ __LINE__ #endif #define OVERLOAD5(a, b, c, d, e, ...) e #define REP1_0(b, c) REP1_1(b, c) #define REP1_1(b, c) \ for (ll REP_COUNTER_##c = 0; REP_COUNTER_##c < (ll)(b); ++REP_COUNTER_##c) #define REP1(b) REP1_0(b, __COUNTER__) #define REP2(i, b) for (ll i = 0; i < (ll)(b); ++i) #define REP3(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i) #define REP4(i, a, b, c) for (ll i = (ll)(a); i < (ll)(b); i += (ll)(c)) #define rep(...) OVERLOAD5(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__) #define RREP2(i, a) for (ll i = (ll)(a)-1; i >= 0; --i) #define RREP3(i, a, b) for (ll i = (ll)(a)-1; i >= (ll)(b); --i) #define RREP4(i, a, b, c) for (ll i = (ll)(a)-1; i >= (ll)(b); i -= (ll)(c)) #define rrep(...) OVERLOAD5(__VA_ARGS__, RREP4, RREP3, RREP2)(__VA_ARGS__) #define REPS2(i, b) for (ll i = 1; i <= (ll)(b); ++i) #define REPS3(i, a, b) for (ll i = (ll)(a) + 1; i <= (ll)(b); ++i) #define REPS4(i, a, b, c) for (ll i = (ll)(a) + 1; i <= (ll)(b); i += (ll)(c)) #define reps(...) OVERLOAD5(__VA_ARGS__, REPS4, REPS3, REPS2)(__VA_ARGS__) #define RREPS2(i, a) for (ll i = (ll)(a); i > 0; --i) #define RREPS3(i, a, b) for (ll i = (ll)(a); i > (ll)(b); --i) #define RREPS4(i, a, b, c) for (ll i = (ll)(a); i > (ll)(b); i -= (ll)(c)) #define rreps(...) OVERLOAD5(__VA_ARGS__, RREPS4, RREPS3, RREPS2)(__VA_ARGS__) #define each_for(...) for (auto&& __VA_ARGS__) #define each_const(...) for (const auto& __VA_ARGS__) #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #if __cpp_if_constexpr >= 201606L #define IF_CONSTEXPR constexpr #else #define IF_CONSTEXPR #endif #define IO_BUFFER_SIZE (1 << 17) #line 2 "template/alias.hpp" #line 4 "template/alias.hpp" using ll = long long; using uint = unsigned int; using ull = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; using ld = long double; using PLL = std::pair<ll, ll>; template<class T> using prique = std::priority_queue<T, std::vector<T>, std::greater<T>>; template<class T> struct infinity { static constexpr T value = std::numeric_limits<T>::max() / 2; static constexpr T mvalue = std::numeric_limits<T>::lowest() / 2; static constexpr T max = std::numeric_limits<T>::max(); static constexpr T min = std::numeric_limits<T>::lowest(); }; #if __cplusplus <= 201402L template<class T> constexpr T infinity<T>::value; template<class T> constexpr T infinity<T>::mvalue; template<class T> constexpr T infinity<T>::max; template<class T> constexpr T infinity<T>::min; #endif #if __cpp_variable_templates >= 201304L template<class T> constexpr T INF = infinity<T>::value; #endif constexpr ll inf = infinity<ll>::value; constexpr ld EPS = 1e-8; constexpr ld PI = 3.1415926535897932384626; #line 6 "template/func.hpp" template<class T, class U, class Comp = std::less<>> inline constexpr bool chmin(T& a, const U& b, Comp cmp = Comp()) noexcept(noexcept(cmp(b, a))) { return cmp(b, a) ? a = b, true : false; } template<class T, class U, class Comp = std::less<>> inline constexpr bool chmax(T& a, const U& b, Comp cmp = Comp()) noexcept(noexcept(cmp(a, b))) { return cmp(a, b) ? a = b, true : false; } inline constexpr ll gcd(ll a, ll b) { if (a < 0) a = -a; if (b < 0) b = -b; while (b) { const ll c = a; a = b; b = c % b; } return a; } inline constexpr ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } inline constexpr bool is_prime(ll N) { if (N <= 1) return false; for (ll i = 2; i * i <= N; ++i) { if (N % i == 0) return false; } return true; } inline std::vector<ll> prime_factor(ll N) { std::vector<ll> res; for (ll i = 2; i * i <= N; ++i) { while (N % i == 0) { res.push_back(i); N /= i; } } if (N != 1) res.push_back(N); return res; } inline constexpr ll my_pow(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res *= a; b >>= 1; a *= a; } return res; } inline constexpr ll mod_pow(ll a, ll b, ll mod) { assert(mod > 0); if (mod == 1) return 0; a %= mod; ll res = 1; while (b) { if (b & 1) (res *= a) %= mod; b >>= 1; (a *= a) %= mod; } return res; } inline PLL extGCD(ll a, ll b) { const ll n = a, m = b; ll x = 1, y = 0, u = 0, v = 1; ll t; while (b) { t = a / b; std::swap(a -= t * b, b); std::swap(x -= t * u, u); std::swap(y -= t * v, v); } if (x < 0) { x += m; y -= n; } return {x, y}; } inline ll mod_inv(ll a, ll mod) { ll b = mod; ll x = 1, u = 0; ll t; while (b) { t = a / b; std::swap(a -= t * b, b); std::swap(x -= t * u, u); } if (x < 0) x += mod; assert(a == 1); return x; }