library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub shiomusubi496/library

:heavy_check_mark: test/yosupo/tree/vertex_get_range_contour_add_on_tree.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/vertex_get_range_contour_add_on_tree"
#include "../../../other/template.hpp"
#include "../../../data-struct/segment/RAQBIT.hpp"
#include "../../../graph/Graph.hpp"
#include "../../../graph/tree/ContourQuery.hpp"
using namespace std;
int main() {
    int N, Q; scan >> N >> Q;
    vector<ll> A(N); scan >> A;
    Graph<int> G(N);
    rep (N - 1) {
        int a, b; scan >> a >> b;
        G.add_edge(a, b);
    }
    vector<RAQBIT<ll>> bit;
    ContourQuery cq(G, [&](auto v) {
        rep (i, v.size()) bit.emplace_back(v[i].size());
    });
    rep (Q) {
        int t; scan >> t;
        if (t == 0) {
            int p, l, r, x; scan >> p >> l >> r >> x;
            cq.range_contour(p, l, r, [&](int p, int r) { bit[p].add(0, r, x); }, [&](int p, int r) { bit[p].add(0, r, -x); });
        }
        else {
            int p; scan >> p;
            ll ans = A[p];
            cq.vertex(p, [&](int p, int k) { ans += bit[p].get(k); });
            prints(ans);
        }
    }
}
#line 1 "test/yosupo/tree/vertex_get_range_contour_add_on_tree.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_get_range_contour_add_on_tree"
#line 2 "other/template.hpp"

#include <bits/stdc++.h>
#line 2 "template/macros.hpp"

#line 4 "template/macros.hpp"

#ifndef __COUNTER__
#define __COUNTER__ __LINE__
#endif

#define OVERLOAD5(a, b, c, d, e, ...) e
#define REP1_0(b, c) REP1_1(b, c)
#define REP1_1(b, c)                                                           \
    for (ll REP_COUNTER_##c = 0; REP_COUNTER_##c < (ll)(b); ++REP_COUNTER_##c)
#define REP1(b) REP1_0(b, __COUNTER__)
#define REP2(i, b) for (ll i = 0; i < (ll)(b); ++i)
#define REP3(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i)
#define REP4(i, a, b, c) for (ll i = (ll)(a); i < (ll)(b); i += (ll)(c))
#define rep(...) OVERLOAD5(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__)
#define RREP2(i, a) for (ll i = (ll)(a)-1; i >= 0; --i)
#define RREP3(i, a, b) for (ll i = (ll)(a)-1; i >= (ll)(b); --i)
#define RREP4(i, a, b, c) for (ll i = (ll)(a)-1; i >= (ll)(b); i -= (ll)(c))
#define rrep(...) OVERLOAD5(__VA_ARGS__, RREP4, RREP3, RREP2)(__VA_ARGS__)
#define REPS2(i, b) for (ll i = 1; i <= (ll)(b); ++i)
#define REPS3(i, a, b) for (ll i = (ll)(a) + 1; i <= (ll)(b); ++i)
#define REPS4(i, a, b, c) for (ll i = (ll)(a) + 1; i <= (ll)(b); i += (ll)(c))
#define reps(...) OVERLOAD5(__VA_ARGS__, REPS4, REPS3, REPS2)(__VA_ARGS__)
#define RREPS2(i, a) for (ll i = (ll)(a); i > 0; --i)
#define RREPS3(i, a, b) for (ll i = (ll)(a); i > (ll)(b); --i)
#define RREPS4(i, a, b, c) for (ll i = (ll)(a); i > (ll)(b); i -= (ll)(c))
#define rreps(...) OVERLOAD5(__VA_ARGS__, RREPS4, RREPS3, RREPS2)(__VA_ARGS__)

#define each_for(...) for (auto&& __VA_ARGS__)
#define each_const(...) for (const auto& __VA_ARGS__)

#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)

#if __cpp_if_constexpr >= 201606L
#define IF_CONSTEXPR constexpr
#else
#define IF_CONSTEXPR
#endif

#define IO_BUFFER_SIZE (1 << 17)
#line 2 "template/alias.hpp"

#line 4 "template/alias.hpp"

using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
using ld = long double;
using PLL = std::pair<ll, ll>;
template<class T>
using prique = std::priority_queue<T, std::vector<T>, std::greater<T>>;

template<class T> struct infinity {
    static constexpr T value = std::numeric_limits<T>::max() / 2;
    static constexpr T mvalue = std::numeric_limits<T>::lowest() / 2;
    static constexpr T max = std::numeric_limits<T>::max();
    static constexpr T min = std::numeric_limits<T>::lowest();
};

#if __cplusplus <= 201402L
template<class T> constexpr T infinity<T>::value;
template<class T> constexpr T infinity<T>::mvalue;
template<class T> constexpr T infinity<T>::max;
template<class T> constexpr T infinity<T>::min;
#endif

#if __cpp_variable_templates >= 201304L
template<class T> constexpr T INF = infinity<T>::value;
#endif

constexpr ll inf = infinity<ll>::value;
constexpr ld EPS = 1e-8;
constexpr ld PI = 3.1415926535897932384626;
#line 2 "template/type_traits.hpp"

#line 5 "template/type_traits.hpp"

template<class T, class... Args> struct function_traits_impl {
    using result_type = T;
    template<std::size_t idx>
    using argument_type =
        typename std::tuple_element<idx, std::tuple<Args...>>::type;
    using argument_tuple = std::tuple<Args...>;
    static constexpr std::size_t arg_size() { return sizeof...(Args); }
};

template<class> struct function_traits_helper;

template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...)> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...)&> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...) const> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...) const&> {
    using type = function_traits_impl<Res, Args...>;
};

#if __cpp_noexcept_function_type >= 201510L
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...) noexcept> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...)& noexcept> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...) const noexcept> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...) const& noexcept> {
    using type = function_traits_impl<Res, Args...>;
};
#endif

template<class F>
using function_traits = typename function_traits_helper<
    decltype(&std::remove_reference<F>::type::operator())>::type;

template<class F>
using function_result_type = typename function_traits<F>::result_type;
template<class F, std::size_t idx>
using function_argument_type =
    typename function_traits<F>::template argument_type<idx>;
template<class F>
using function_argument_tuple = typename function_traits<F>::argument_tuple;

template<class T>
using is_signed_int =
    std::integral_constant<bool, (std::is_integral<T>::value &&
                                  std::is_signed<T>::value) ||
                                     std::is_same<T, i128>::value>;
template<class T>
using is_unsigned_int =
    std::integral_constant<bool, (std::is_integral<T>::value &&
                                  std::is_unsigned<T>::value) ||
                                     std::is_same<T, u128>::value>;
template<class T>
using is_int = std::integral_constant<bool, is_signed_int<T>::value ||
                                                is_unsigned_int<T>::value>;
template<class T>
using make_signed_int = typename std::conditional<
    std::is_same<T, i128>::value || std::is_same<T, u128>::value,
    std::common_type<i128>, std::make_signed<T>>::type;
template<class T>
using make_unsigned_int = typename std::conditional<
    std::is_same<T, i128>::value || std::is_same<T, u128>::value,
    std::common_type<u128>, std::make_unsigned<T>>::type;


template<class T, class = void> struct is_range : std::false_type {};
template<class T>
struct is_range<
    T,
    decltype(all(std::declval<typename std::add_lvalue_reference<T>::type>()),
             (void)0)> : std::true_type {};

template<class T, bool = is_range<T>::value>
struct range_rank : std::integral_constant<std::size_t, 0> {};
template<class T>
struct range_rank<T, true>
    : std::integral_constant<std::size_t,
                             range_rank<typename T::value_type>::value + 1> {};

template<std::size_t size> struct int_least {
    static_assert(size <= 128, "size must be less than or equal to 128");

    using type = typename std::conditional<
        size <= 8, std::int_least8_t,
        typename std::conditional<
            size <= 16, std::int_least16_t,
            typename std::conditional<
                size <= 32, std::int_least32_t,
                typename std::conditional<size <= 64, std::int_least64_t,
                                          i128>::type>::type>::type>::type;
};

template<std::size_t size> using int_least_t = typename int_least<size>::type;

template<std::size_t size> struct uint_least {
    static_assert(size <= 128, "size must be less than or equal to 128");

    using type = typename std::conditional<
        size <= 8, std::uint_least8_t,
        typename std::conditional<
            size <= 16, std::uint_least16_t,
            typename std::conditional<
                size <= 32, std::uint_least32_t,
                typename std::conditional<size <= 64, std::uint_least64_t,
                                          u128>::type>::type>::type>::type;
};

template<std::size_t size> using uint_least_t = typename uint_least<size>::type;

template<class T>
using double_size_int = int_least<std::numeric_limits<T>::digits * 2 + 1>;
template<class T> using double_size_int_t = typename double_size_int<T>::type;
template<class T>
using double_size_uint = uint_least<std::numeric_limits<T>::digits * 2>;
template<class T> using double_size_uint_t = typename double_size_uint<T>::type;

template<class T>
using double_size =
    typename std::conditional<is_signed_int<T>::value, double_size_int<T>,
                              double_size_uint<T>>::type;
template<class T> using double_size_t = typename double_size<T>::type;
#line 2 "template/in.hpp"

#line 4 "template/in.hpp"
#include <unistd.h>
#line 8 "template/in.hpp"

template<std::size_t buf_size = IO_BUFFER_SIZE,
         std::size_t decimal_precision = 16>
class Scanner {
private:
    template<class, class = void> struct has_scan : std::false_type {};
    template<class T>
    struct has_scan<
        T, decltype(std::declval<T>().scan(std::declval<Scanner&>()), (void)0)>
        : std::true_type {};
    int fd;
    int idx, sz;
    bool state;
    std::array<char, IO_BUFFER_SIZE + 1> buffer;
    inline char cur() {
        if (idx == sz) load();
        if (idx == sz) {
            state = false;
            return '\0';
        }
        return buffer[idx];
    }
    inline void next() {
        if (idx == sz) load();
        if (idx == sz) return;
        ++idx;
    }

public:
    inline void load() {
        int len = sz - idx;
        if (idx < len) return;
        std::memcpy(buffer.begin(), buffer.begin() + idx, len);
        sz = len + read(fd, buffer.data() + len, buf_size - len);
        buffer[sz] = 0;
        idx = 0;
    }

    Scanner(int fd) : fd(fd), idx(0), sz(0), state(true) {}
    Scanner(FILE* fp) : fd(fileno(fp)), idx(0), sz(0), state(true) {}

    inline char scan_char() {
        if (idx == sz) load();
        return idx == sz ? '\0' : buffer[idx++];
    }

    Scanner ignore(int n = 1) {
        if (idx + n > sz) load();
        idx += n;
        return *this;
    }

    inline void discard_space() {
        if (idx == sz) load();
        while (('\t' <= buffer[idx] && buffer[idx] <= '\r') ||
               buffer[idx] == ' ') {
            if (++idx == sz) load();
        }
    }
    void scan(char& a) {
        discard_space();
        a = scan_char();
    }
    void scan(bool& a) {
        discard_space();
        a = scan_char() != '0';
    }
    void scan(std::string& a) {
        discard_space();
        a.clear();
        while (cur() != '\0' && (buffer[idx] < '\t' || '\r' < buffer[idx]) &&
               buffer[idx] != ' ') {
            a += scan_char();
        }
    }
    template<std::size_t len> void scan(std::bitset<len>& a) {
        discard_space();
        if (idx + len > sz) load();
        rrep (i, len) a[i] = buffer[idx++] != '0';
    }
    template<class T,
             typename std::enable_if<is_signed_int<T>::value &&
                                     !has_scan<T>::value>::type* = nullptr>
    void scan(T& a) {
        discard_space();
        if (buffer[idx] == '-') {
            ++idx;
            if (idx + 40 > sz &&
                (idx == sz || ('0' <= buffer[sz - 1] && buffer[sz - 1] <= '9')))
                load();
            a = 0;
            while ('0' <= buffer[idx] && buffer[idx] <= '9') {
                a = a * 10 - (buffer[idx++] - '0');
            }
        }
        else {
            if (idx + 40 > sz && '0' <= buffer[sz - 1] && buffer[sz - 1] <= '9')
                load();
            a = 0;
            while ('0' <= buffer[idx] && buffer[idx] <= '9') {
                a = a * 10 + (buffer[idx++] - '0');
            }
        }
    }
    template<class T,
             typename std::enable_if<is_unsigned_int<T>::value &&
                                     !has_scan<T>::value>::type* = nullptr>
    void scan(T& a) {
        discard_space();
        if (idx + 40 > sz && '0' <= buffer[sz - 1] && buffer[sz - 1] <= '9')
            load();
        a = 0;
        while ('0' <= buffer[idx] && buffer[idx] <= '9') {
            a = a * 10 + (buffer[idx++] - '0');
        }
    }
    template<class T,
             typename std::enable_if<std::is_floating_point<T>::value &&
                                     !has_scan<T>::value>::type* = nullptr>
    void scan(T& a) {
        discard_space();
        bool sgn = false;
        if (cur() == '-') {
            sgn = true;
            next();
        }
        a = 0;
        while ('0' <= cur() && cur() <= '9') {
            a = a * 10 + cur() - '0';
            next();
        }
        if (cur() == '.') {
            next();
            T n = 0, d = 1;
            for (int i = 0;
                 '0' <= cur() && cur() <= '9' && i < (int)decimal_precision;
                 ++i) {
                n = n * 10 + cur() - '0';
                d *= 10;
                next();
            }
            while ('0' <= cur() && cur() <= '9') next();
            a += n / d;
        }
        if (sgn) a = -a;
    }

private:
    template<std::size_t i, class... Args> void scan(std::tuple<Args...>& a) {
        if IF_CONSTEXPR (i < sizeof...(Args)) {
            scan(std::get<i>(a));
            scan<i + 1, Args...>(a);
        }
    }

public:
    template<class... Args> void scan(std::tuple<Args...>& a) {
        scan<0, Args...>(a);
    }
    template<class T, class U> void scan(std::pair<T, U>& a) {
        scan(a.first);
        scan(a.second);
    }
    template<class T,
             typename std::enable_if<is_range<T>::value &&
                                     !has_scan<T>::value>::type* = nullptr>
    void scan(T& a) {
        for (auto&& i : a) scan(i);
    }
    template<class T,
             typename std::enable_if<has_scan<T>::value>::type* = nullptr>
    void scan(T& a) {
        a.scan(*this);
    }

    void operator()() {}
    template<class Head, class... Args>
    void operator()(Head& head, Args&... args) {
        scan(head);
        operator()(args...);
    }

    template<class T> Scanner& operator>>(T& a) {
        scan(a);
        return *this;
    }

    explicit operator bool() const { return state; }

    friend Scanner& getline(Scanner& scan, std::string& a) {
        a.erase();
        char c;
        if ((c = scan.scan_char()) == '\n' || c == '\0') return scan;
        a += c;
        while ((c = scan.scan_char()) != '\n' && c != '\0') a += c;
        scan.state = true;
        return scan;
    }
};

Scanner<> scan(0);
#line 2 "template/out.hpp"

#line 8 "template/out.hpp"

struct NumberToString {
    char buf[10000][4];
    constexpr NumberToString() : buf{} {
        rep (i, 10000) {
            int n = i;
            rrep (j, 4) {
                buf[i][j] = (char)('0' + n % 10);
                n /= 10;
            }
        }
    }
} constexpr precalc_number_to_string;

template<std::size_t buf_size = IO_BUFFER_SIZE, bool debug = false>
class Printer {
private:
    template<class, bool = debug, class = void>
    struct has_print : std::false_type {};
    template<class T>
    struct has_print<T, false,
                     decltype(std::declval<T>().print(std::declval<Printer&>()),
                              (void)0)> : std::true_type {};
    template<class T>
    struct has_print<T, true,
                     decltype(std::declval<T>().debug(std::declval<Printer&>()),
                              (void)0)> : std::true_type {};
    int fd;
    std::size_t idx;
    std::array<char, buf_size> buffer;

    std::size_t decimal_precision;

public:
    inline void print_char(char c) {
#if SHIO_LOCAL
        buffer[idx++] = c;
        if (idx == buf_size) flush();
#else
        if IF_CONSTEXPR (!debug) {
            buffer[idx++] = c;
            if (idx == buf_size) flush();
        }
#endif
    }
    inline void flush() {
        idx = write(fd, buffer.begin(), idx);
        idx = 0;
    }

    Printer(int fd) : fd(fd), idx(0), decimal_precision(16) {}
    Printer(FILE* fp) : fd(fileno(fp)), idx(0), decimal_precision(16) {}
    ~Printer() { flush(); }

    void set_decimal_precision(std::size_t decimal_precision) {
        this->decimal_precision = decimal_precision;
    }

    void print(char c) {
        if IF_CONSTEXPR (debug) print_char('\'');
        print_char(c);
        if IF_CONSTEXPR (debug) print_char('\'');
    }
    void print(bool b) { print_char((char)(b + '0')); }
    void print(const char* a) {
        if IF_CONSTEXPR (debug) print_char('"');
        for (; *a != '\0'; ++a) print_char(*a);
        if IF_CONSTEXPR (debug) print_char('"');
    }
    template<std::size_t len> void print(const char (&a)[len]) {
        if IF_CONSTEXPR (debug) print_char('"');
        for (auto i : a) print_char(i);
        if IF_CONSTEXPR (debug) print_char('"');
    }
    void print(const std::string& a) {
        if IF_CONSTEXPR (debug) print_char('"');
        for (auto i : a) print_char(i);
        if IF_CONSTEXPR (debug) print_char('"');
    }
    template<std::size_t len> void print(const std::bitset<len>& a) {
        rrep (i, len) print_char((char)(a[i] + '0'));
    }
    template<class T,
             typename std::enable_if<is_int<T>::value &&
                                     !has_print<T>::value>::type* = nullptr>
    void print(T a) {
        if (!a) {
            print_char('0');
            return;
        }
        if IF_CONSTEXPR (is_signed_int<T>::value) {
            if (a < 0) {
                print_char('-');
                using U = typename make_unsigned_int<T>::type;
                print(static_cast<U>(-static_cast<U>(a)));
                return;
            }
        }
        if (idx + 40 >= buf_size) flush();
        static char s[40];
        int t = 40;
        while (a >= 10000) {
            int i = a % 10000;
            a /= 10000;
            t -= 4;
            std::memcpy(s + t, precalc_number_to_string.buf[i], 4);
        }
        if (a >= 1000) {
            std::memcpy(buffer.begin() + idx, precalc_number_to_string.buf[a],
                        4);
            idx += 4;
        }
        else if (a >= 100) {
            std::memcpy(buffer.begin() + idx,
                        precalc_number_to_string.buf[a] + 1, 3);
            idx += 3;
        }
        else if (a >= 10) {
            std::memcpy(buffer.begin() + idx,
                        precalc_number_to_string.buf[a] + 2, 2);
            idx += 2;
        }
        else {
            buffer[idx++] = '0' | a;
        }
        std::memcpy(buffer.begin() + idx, s + t, 40 - t);
        idx += 40 - t;
    }
    template<class T,
             typename std::enable_if<std::is_floating_point<T>::value &&
                                     !has_print<T>::value>::type* = nullptr>
    void print(T a) {
        if (a == std::numeric_limits<T>::infinity()) {
            print("inf");
            return;
        }
        if (a == -std::numeric_limits<T>::infinity()) {
            print("-inf");
            return;
        }
        if (std::isnan(a)) {
            print("nan");
            return;
        }
        if (a < 0) {
            print_char('-');
            a = -a;
        }
        T b = a;
        if (b < 1) {
            print_char('0');
        }
        else {
            std::string s;
            while (b >= 1) {
                s += (char)('0' + (int)std::fmod(b, 10.0));
                b /= 10;
            }
            for (auto i = s.rbegin(); i != s.rend(); ++i) print_char(*i);
        }
        print_char('.');
        rep (decimal_precision) {
            a *= 10;
            print_char((char)('0' + (int)std::fmod(a, 10.0)));
        }
    }

private:
    template<std::size_t i, class... Args>
    void print(const std::tuple<Args...>& a) {
        if IF_CONSTEXPR (i < sizeof...(Args)) {
            if IF_CONSTEXPR (debug) print_char(',');
            print_char(' ');
            print(std::get<i>(a));
            print<i + 1, Args...>(a);
        }
    }

public:
    template<class... Args> void print(const std::tuple<Args...>& a) {
        if IF_CONSTEXPR (debug) print_char('(');
        if IF_CONSTEXPR (sizeof...(Args) != 0) print(std::get<0>(a));
        print<1, Args...>(a);
        if IF_CONSTEXPR (debug) print_char(')');
    }
    template<class T, class U> void print(const std::pair<T, U>& a) {
        if IF_CONSTEXPR (debug) print_char('(');
        print(a.first);
        if IF_CONSTEXPR (debug) print_char(',');
        print_char(' ');
        print(a.second);
        if IF_CONSTEXPR (debug) print_char(')');
    }
    template<class T,
             typename std::enable_if<is_range<T>::value &&
                                     !has_print<T>::value>::type* = nullptr>
    void print(const T& a) {
        if IF_CONSTEXPR (debug) print_char('{');
        for (auto i = std::begin(a); i != std::end(a); ++i) {
            if (i != std::begin(a)) {
                if IF_CONSTEXPR (debug) print_char(',');
                print_char(' ');
            }
            print(*i);
        }
        if IF_CONSTEXPR (debug) print_char('}');
    }
    template<class T, typename std::enable_if<has_print<T>::value &&
                                              !debug>::type* = nullptr>
    void print(const T& a) {
        a.print(*this);
    }
    template<class T, typename std::enable_if<has_print<T>::value &&
                                              debug>::type* = nullptr>
    void print(const T& a) {
        a.debug(*this);
    }

    void operator()() {}
    template<class Head, class... Args>
    void operator()(const Head& head, const Args&... args) {
        print(head);
        operator()(args...);
    }

    template<class T> Printer& operator<<(const T& a) {
        print(a);
        return *this;
    }

    Printer& operator<<(Printer& (*pf)(Printer&)) { return pf(*this); }
};

template<std::size_t buf_size, bool debug>
Printer<buf_size, debug>& endl(Printer<buf_size, debug>& pr) {
    pr.print_char('\n');
    pr.flush();
    return pr;
}
template<std::size_t buf_size, bool debug>
Printer<buf_size, debug>& flush(Printer<buf_size, debug>& pr) {
    pr.flush();
    return pr;
}

struct SetPrec {
    int n;
    template<class Pr> void print(Pr& pr) const { pr.set_decimal_precision(n); }
    template<class Pr> void debug(Pr& pr) const { pr.set_decimal_precision(n); }
};
SetPrec setprec(int n) { return SetPrec{n}; };

Printer<> print(1), eprint(2);

void prints() { print.print_char('\n'); }

template<class T> auto prints(const T& v) -> decltype(print << v, (void)0) {
    print << v;
    print.print_char('\n');
}

template<class Head, class... Tail>
auto prints(const Head& head, const Tail&... tail)
    -> decltype(print << head, (void)0) {
    print << head;
    print.print_char(' ');
    prints(tail...);
}

Printer<IO_BUFFER_SIZE, true> debug(1), edebug(2);

void debugs() { debug.print_char('\n'); }

template<class T> auto debugs(const T& v) -> decltype(debug << v, (void)0) {
    debug << v;
    debug.print_char('\n');
}

template<class Head, class... Tail>
auto debugs(const Head& head, const Tail&... tail)
    -> decltype(debug << head, (void)0) {
    debug << head;
    debug.print_char(' ');
    debugs(tail...);
}
#line 2 "template/bitop.hpp"

#line 6 "template/bitop.hpp"

namespace bitop {

#define KTH_BIT(b, k) (((b) >> (k)) & 1)
#define POW2(k) (1ull << (k))

inline ull next_combination(int n, ull x) {
    if (n == 0) return 1;
    ull a = x & -x;
    ull b = x + a;
    return (x & ~b) / a >> 1 | b;
}

#define rep_comb(i, n, k)                                                      \
    for (ull i = (1ull << (k)) - 1; i < (1ull << (n));                         \
         i = bitop::next_combination((n), i))

inline constexpr int msb(ull x) {
    int res = x ? 0 : -1;
    if (x & 0xFFFFFFFF00000000) x &= 0xFFFFFFFF00000000, res += 32;
    if (x & 0xFFFF0000FFFF0000) x &= 0xFFFF0000FFFF0000, res += 16;
    if (x & 0xFF00FF00FF00FF00) x &= 0xFF00FF00FF00FF00, res += 8;
    if (x & 0xF0F0F0F0F0F0F0F0) x &= 0xF0F0F0F0F0F0F0F0, res += 4;
    if (x & 0xCCCCCCCCCCCCCCCC) x &= 0xCCCCCCCCCCCCCCCC, res += 2;
    return res + ((x & 0xAAAAAAAAAAAAAAAA) ? 1 : 0);
}

inline constexpr int ceil_log2(ull x) { return x ? msb(x - 1) + 1 : 0; }

inline constexpr ull reverse(ull x) {
    x = ((x & 0xAAAAAAAAAAAAAAAA) >> 1) | ((x & 0x5555555555555555) << 1);
    x = ((x & 0xCCCCCCCCCCCCCCCC) >> 2) | ((x & 0x3333333333333333) << 2);
    x = ((x & 0xF0F0F0F0F0F0F0F0) >> 4) | ((x & 0x0F0F0F0F0F0F0F0F) << 4);
    x = ((x & 0xFF00FF00FF00FF00) >> 8) | ((x & 0x00FF00FF00FF00FF) << 8);
    x = ((x & 0xFFFF0000FFFF0000) >> 16) | ((x & 0x0000FFFF0000FFFF) << 16);
    return (x >> 32) | (x << 32);
}

inline constexpr ull reverse(ull x, int n) { return reverse(x) >> (64 - n); }

} // namespace bitop

inline constexpr int popcnt(ull x) noexcept {
#if __cplusplus >= 202002L
    return std::popcount(x);
#endif
    x = (x & 0x5555555555555555) + ((x >> 1) & 0x5555555555555555);
    x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333);
    x = (x & 0x0f0f0f0f0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f0f0f0f0f);
    x = (x & 0x00ff00ff00ff00ff) + ((x >> 8) & 0x00ff00ff00ff00ff);
    x = (x & 0x0000ffff0000ffff) + ((x >> 16) & 0x0000ffff0000ffff);
    return (x & 0x00000000ffffffff) + ((x >> 32) & 0x00000000ffffffff);
}
#line 2 "template/func.hpp"

#line 6 "template/func.hpp"

template<class T, class U, class Comp = std::less<>>
inline constexpr bool chmin(T& a, const U& b,
                            Comp cmp = Comp()) noexcept(noexcept(cmp(b, a))) {
    return cmp(b, a) ? a = b, true : false;
}
template<class T, class U, class Comp = std::less<>>
inline constexpr bool chmax(T& a, const U& b,
                            Comp cmp = Comp()) noexcept(noexcept(cmp(a, b))) {
    return cmp(a, b) ? a = b, true : false;
}

inline constexpr ll gcd(ll a, ll b) {
    if (a < 0) a = -a;
    if (b < 0) b = -b;
    while (b) {
        const ll c = a;
        a = b;
        b = c % b;
    }
    return a;
}
inline constexpr ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }

inline constexpr bool is_prime(ll N) {
    if (N <= 1) return false;
    for (ll i = 2; i * i <= N; ++i) {
        if (N % i == 0) return false;
    }
    return true;
}
inline std::vector<ll> prime_factor(ll N) {
    std::vector<ll> res;
    for (ll i = 2; i * i <= N; ++i) {
        while (N % i == 0) {
            res.push_back(i);
            N /= i;
        }
    }
    if (N != 1) res.push_back(N);
    return res;
}

inline constexpr ll my_pow(ll a, ll b) {
    ll res = 1;
    while (b) {
        if (b & 1) res *= a;
        b >>= 1;
        a *= a;
    }
    return res;
}
inline constexpr ll mod_pow(ll a, ll b, ll mod) {
    assert(mod > 0);
    if (mod == 1) return 0;
    a %= mod;
    ll res = 1;
    while (b) {
        if (b & 1) (res *= a) %= mod;
        b >>= 1;
        (a *= a) %= mod;
    }
    return res;
}

inline PLL extGCD(ll a, ll b) {
    const ll n = a, m = b;
    ll x = 1, y = 0, u = 0, v = 1;
    ll t;
    while (b) {
        t = a / b;
        std::swap(a -= t * b, b);
        std::swap(x -= t * u, u);
        std::swap(y -= t * v, v);
    }
    if (x < 0) {
        x += m;
        y -= n;
    }
    return {x, y};
}
inline ll mod_inv(ll a, ll mod) {
    ll b = mod;
    ll x = 1, u = 0;
    ll t;
    while (b) {
        t = a / b;
        std::swap(a -= t * b, b);
        std::swap(x -= t * u, u);
    }
    if (x < 0) x += mod;
    assert(a == 1);
    return x;
}
#line 2 "template/util.hpp"

#line 6 "template/util.hpp"

template<class F> class RecLambda {
private:
    F f;

public:
    explicit constexpr RecLambda(F&& f_) : f(std::forward<F>(f_)) {}
    template<class... Args>
    constexpr auto operator()(Args&&... args)
        -> decltype(f(*this, std::forward<Args>(args)...)) {
        return f(*this, std::forward<Args>(args)...);
    }
};

template<class F> inline constexpr RecLambda<F> rec_lambda(F&& f) {
    return RecLambda<F>(std::forward<F>(f));
}


template<class Head, class... Tail> struct multi_dim_vector {
    using type = std::vector<typename multi_dim_vector<Tail...>::type>;
};
template<class T> struct multi_dim_vector<T> { using type = T; };

template<class T, class Arg>
constexpr std::vector<T> make_vec(int n, Arg&& arg) {
    return std::vector<T>(n, std::forward<Arg>(arg));
}
template<class T, class... Args>
constexpr typename multi_dim_vector<Args..., T>::type make_vec(int n,
                                                               Args&&... args) {
    return typename multi_dim_vector<Args..., T>::type(
        n, make_vec<T>(std::forward<Args>(args)...));
}


template<class T, class Comp = std::less<T>> class compressor {
private:
    std::vector<T> dat;
    Comp cmp;
    bool sorted = false;

public:
    compressor() : compressor(Comp()) {}
    compressor(const Comp& cmp) : cmp(cmp) {}
    compressor(const std::vector<T>& vec, bool f = false,
               const Comp& cmp = Comp())
        : dat(vec), cmp(cmp) {
        if (f) build();
    }
    compressor(std::vector<T>&& vec, bool f = false, const Comp& cmp = Comp())
        : dat(std::move(vec)), cmp(cmp) {
        if (f) build();
    }
    compressor(std::initializer_list<T> il, bool f = false,
               const Comp& cmp = Comp())
        : dat(all(il)), cmp(cmp) {
        if (f) build();
    }
    void reserve(int n) {
        assert(!sorted);
        dat.reserve(n);
    }
    void push_back(const T& v) {
        assert(!sorted);
        dat.push_back(v);
    }
    void push_back(T&& v) {
        assert(!sorted);
        dat.push_back(std::move(v));
    }
    template<class... Args> void emplace_back(Args&&... args) {
        assert(!sorted);
        dat.emplace_back(std::forward<Args>(args)...);
    }
    void push(const std::vector<T>& vec) {
        assert(!sorted);
        const int n = dat.size();
        dat.resize(n + vec.size());
        rep (i, vec.size()) dat[n + i] = vec[i];
    }
    int build() {
        assert(!sorted);
        sorted = true;
        std::sort(all(dat), cmp);
        dat.erase(std::unique(all(dat),
                              [&](const T& a, const T& b) -> bool {
                                  return !cmp(a, b) && !cmp(b, a);
                              }),
                  dat.end());
        return dat.size();
    }
    const T& operator[](int k) const& {
        assert(sorted);
        assert(0 <= k && k < (int)dat.size());
        return dat[k];
    }
    int get(const T& val) const {
        assert(sorted);
        auto itr = std::lower_bound(all(dat), val, cmp);
        assert(itr != dat.end() && !cmp(val, *itr));
        return itr - dat.begin();
    }
    int lower_bound(const T& val) const {
        assert(sorted);
        auto itr = std::lower_bound(all(dat), val, cmp);
        return itr - dat.begin();
    }
    int upper_bound(const T& val) const {
        assert(sorted);
        auto itr = std::upper_bound(all(dat), val, cmp);
        return itr - dat.begin();
    }
    bool contains(const T& val) const {
        assert(sorted);
        return std::binary_search(all(dat), val, cmp);
    }
    std::vector<int> pressed(const std::vector<T>& vec) const {
        assert(sorted);
        std::vector<int> res(vec.size());
        rep (i, vec.size()) res[i] = get(vec[i]);
        return res;
    }
    void press(std::vector<T>& vec) const {
        assert(sorted);
        for (auto&& i : vec) i = get(i);
    }
    int size() const {
        assert(sorted);
        return dat.size();
    }
};
#line 2 "data-struct/segment/RAQBIT.hpp"

#line 2 "other/monoid.hpp"

#line 4 "other/monoid.hpp"

namespace Monoid {

template<class M, class = void>
class has_value_type : public std::false_type {};
template<class M>
class has_value_type<M, decltype((void)std::declval<typename M::value_type>())>
    : public std::true_type {};

template<class M, class = void> class has_op : public std::false_type {};
template<class M>
class has_op<M, decltype((void)M::op)> : public std::true_type {};

template<class M, class = void> class has_id : public std::false_type {};
template<class M>
class has_id<M, decltype((void)M::id)> : public std::true_type {};

template<class M, class = void> class has_inv : public std::false_type {};
template<class M>
class has_inv<M, decltype((void)M::inv)> : public std::true_type {};

template<class M, class = void> class has_get_inv : public std::false_type {};
template<class M>
class has_get_inv<M, decltype((void)M::get_inv)> : public std::true_type {};

template<class M, class = void> class has_init : public std::false_type {};
template<class M>
class has_init<M, decltype((void)M::init(0, 0))> : public std::true_type {};

template<class A, class = void> class has_mul_op : public std::false_type {};
template<class A>
class has_mul_op<A, decltype((void)A::mul_op)> : public std::true_type {};

template<class T, class = void> class is_semigroup : public std::false_type {};
template<class T>
class is_semigroup<T, decltype(std::declval<typename T::value_type>(),
                               (void)T::op)> : public std::true_type {};

template<class T, class = void> class is_monoid : public std::false_type {};

template<class T>
class is_monoid<T, decltype(std::declval<typename T::value_type>(), (void)T::op,
                            (void)T::id)> : public std::true_type {};

template<class T, class = void> class is_group : public std::false_type {};

template<class T>
class is_group<T, decltype(std::declval<typename T::value_type>(), (void)T::op,
                           (void)T::id, (void)T::get_inv)>
    : public std::true_type {};

template<class T, class = void> class is_action : public std::false_type {};
template<class T>
class is_action<T, typename std::enable_if<is_monoid<typename T::M>::value &&
                                           is_semigroup<typename T::E>::value &&
                                           (has_op<T>::value ||
                                            has_mul_op<T>::value)>::type>
    : public std::true_type {};

template<class T, class = void>
class is_distributable_action : public std::false_type {};
template<class T>
class is_distributable_action<
    T,
    typename std::enable_if<is_action<T>::value && !has_mul_op<T>::value>::type>
    : public std::true_type {};

template<class T> struct Sum {
    using value_type = T;
    static constexpr T op(const T& a, const T& b) { return a + b; }
    static constexpr T id() { return T{0}; }
    static constexpr T inv(const T& a, const T& b) { return a - b; }
    static constexpr T get_inv(const T& a) { return -a; }
};

template<class T, int i = -1> struct Min {
    using value_type = T;
    static T max_value;
    static T op(const T& a, const T& b) { return a < b ? a : b; }
    static T id() { return max_value; }
};
template<class T> struct Min<T, -1> {
    using value_type = T;
    static constexpr T op(const T& a, const T& b) { return a < b ? a : b; }
    static constexpr T id() { return infinity<T>::value; }
};
template<class T> struct Min<T, -2> {
    using value_type = T;
    static constexpr T op(const T& a, const T& b) { return a < b ? a : b; }
    static constexpr T id() { return infinity<T>::max; }
};
template<class T, int id> T Min<T, id>::max_value;

template<class T, int i = -1> struct Max {
    using value_type = T;
    static T min_value;
    static T op(const T& a, const T& b) { return a > b ? a : b; }
    static T id() { return min_value; }
};
template<class T> struct Max<T, -1> {
    using value_type = T;
    static constexpr T op(const T& a, const T& b) { return a > b ? a : b; }
    static constexpr T id() { return infinity<T>::mvalue; }
};
template<class T> struct Max<T, -2> {
    using value_type = T;
    static constexpr T op(const T& a, const T& b) { return a > b ? a : b; }
    static constexpr T id() { return infinity<T>::min; }
};

template<class T> struct Assign {
    using value_type = T;
    static constexpr T op(const T&, const T& b) { return b; }
};


template<class T, int id = -1> struct AssignMin {
    using M = Min<T, id>;
    using E = Assign<T>;
    static constexpr T op(const T& a, const T&) { return a; }
};

template<class T, int id = -1> struct AssignMax {
    using M = Max<T, id>;
    using E = Assign<T>;
    static constexpr T op(const T& a, const T&) { return a; }
};

template<class T> struct AssignSum {
    using M = Sum<T>;
    using E = Assign<T>;
    static constexpr T mul_op(const T& a, int b, const T&) { return a * b; }
};

template<class T, int id = -1> struct AddMin {
    using M = Min<T, id>;
    using E = Sum<T>;
    static constexpr T op(const T& a, const T& b) { return b + a; }
};

template<class T, int id = -1> struct AddMax {
    using M = Max<T, id>;
    using E = Sum<T>;
    static constexpr T op(const T& a, const T& b) { return b + a; }
};

template<class T> struct AddSum {
    using M = Sum<T>;
    using E = Sum<T>;
    static constexpr T mul_op(const T& a, int b, const T& c) {
        return c + a * b;
    }
};

template<class T, int id = -1> struct ChminMin {
    using M = Min<T, id>;
    using E = Min<T>;
    static constexpr T op(const T& a, const T& b) { return std::min(b, a); }
};

template<class T, int id = -1> struct ChminMax {
    using M = Max<T, id>;
    using E = Min<T>;
    static constexpr T op(const T& a, const T& b) { return std::min(b, a); }
};

template<class T, int id = -1> struct ChmaxMin {
    using M = Min<T, id>;
    using E = Max<T>;
    static constexpr T op(const T& a, const T& b) { return std::max(b, a); }
};

template<class T, int id = -1> struct ChmaxMax {
    using M = Max<T, id>;
    using E = Max<T>;
    static constexpr T op(const T& a, const T& b) { return std::max(b, a); }
};


template<class M> struct ReverseMonoid {
    using value_type = typename M::value_type;
    static value_type op(const value_type& a, const value_type& b) {
        return M::op(b, a);
    }
    static value_type id() {
        static_assert(has_id<M>::value, "id is not defined");
        return M::id();
    }
    static value_type inv(const value_type& a, const value_type& b) {
        static_assert(has_inv<M>::value, "inv is not defined");
        return M::inv(b, a);
    }
    static value_type get_inv(const value_type& a) {
        static_assert(has_get_inv<M>::value, "get_inv is not defined");
        return M::get_inv(a);
    }
};

template<class E_> struct MakeAction {
    using M = E_;
    using E = E_;
    using T = typename E_::value_type;
    static T op(const T& a, const T& b) { return E_::op(b, a); }
};

} // namespace Monoid
#line 2 "data-struct/segment/BinaryIndexedTree.hpp"

#line 5 "data-struct/segment/BinaryIndexedTree.hpp"

template<class M, bool = Monoid::is_monoid<M>::value> class BinaryIndexedTree {
private:
    using T = typename M::value_type;
    int n;
    std::vector<T> data;

public:
    BinaryIndexedTree() : BinaryIndexedTree(0) {}
    BinaryIndexedTree(int n_) { init(n_); }
    void init(int n_) {
        n = n_;
        data.assign(n + 1, M::id());
    }
    void apply(int k, T x) {
        assert(0 <= k && k < n);
        ++k;
        while (k <= n) {
            data[k] = M::op(data[k], x);
            k += k & -k;
        }
    }
    T prod(int k) const {
        assert(0 <= k && k <= n);
        T res = M::id();
        while (k) {
            res = M::op(res, data[k]);
            k -= k & -k;
        }
        return res;
    }
    template<bool AlwaysTrue = true,
             typename std::enable_if<Monoid::has_inv<M>::value &&
                                     AlwaysTrue>::type* = nullptr>
    T prod(int l, int r) const {
        assert(l <= r);
        return M::inv(prod(r), prod(l));
    }
    T get(int k) const { return prod(k, k + 1); }
    void set(int k, T x) { apply(k, M::inv(x, get(k))); }
};

template<class T>
class BinaryIndexedTree<T, false> : public BinaryIndexedTree<Monoid::Sum<T>> {
private:
    using Base = BinaryIndexedTree<Monoid::Sum<T>>;

public:
    using Base::Base;
    void add(int k, T x) { this->apply(k, x); }
    T sum(int k) const { return this->prod(k); }
    T sum(int l, int r) const { return this->prod(l, r); }
};

/**
 * @brief BinaryIndexedTree(FenwickTree, BIT)
 * @docs docs/data-struct/segment/BinaryIndexedTree.md
 */
#line 2 "data-struct/segment/CumulativeSum.hpp"

#line 5 "data-struct/segment/CumulativeSum.hpp"

template<class M, bool = Monoid::is_monoid<M>::value> class CumulativeSum {
private:
    using T = typename M::value_type;
    int n;
    std::vector<T> data;

public:
    CumulativeSum() = default;
    CumulativeSum(const std::vector<T>& v) { init(v); }
    void init(const std::vector<T>& v) {
        n = v.size();
        data.assign(n + 1, M::id());
        rep (i, n) data[i + 1] = M::op(data[i], v[i]);
    }
    template<bool AlwaysTrue = true,
             typename std::enable_if<Monoid::has_inv<M>::value &&
                                     AlwaysTrue>::type* = nullptr>
    T prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= n);
        return M::inv(data[r], data[l]);
    }
    const std::vector<T>& get_data() const& { return data; }
    std::vector<T> get_data() && { return std::move(data); }
};

template<class T>
class CumulativeSum<T, false> : public CumulativeSum<Monoid::Sum<T>> {
private:
    using Base = CumulativeSum<Monoid::Sum<T>>;

public:
    using Base::Base;
};

/**
 * @brief CumulativeSum(累積和)
 * @docs docs/data-struct/segment/CumulativeSum.md
 */
#line 7 "data-struct/segment/RAQBIT.hpp"

template<class M, bool = Monoid::is_monoid<M>::value> class RAQBIT {
private:
    using T = typename M::value_type;
    int n;
    BinaryIndexedTree<M> bit;

public:
    RAQBIT(int n_) : n(n_), bit(n_) {}
    void apply(int l, int r, T x) {
        assert(0 <= l && l <= r && r <= n);
        if (l == r) return;
        bit.apply(l, x);
        if (r != n) bit.apply(r, M::get_inv(x));
    }
    void apply(int k, T x) { apply(k, k + 1, x); }
    T get(int k) const {
        assert(0 <= k && k < n);
        return bit.prod(k + 1);
    }
    void set(int k, T x) { apply(k, M::inv(x, get(k))); }
};

template<class T> class RAQBIT<T, false> : public RAQBIT<Monoid::Sum<T>> {
private:
    using Base = RAQBIT<Monoid::Sum<T>>;

public:
    using Base::Base;
    void add(int l, int r, T x) { this->apply(l, r, x); }
    void add(int k, T x) { this->apply(k, x); }
    T sum(int k) const { return this->get(k); }
};


template<class T> class RAQRSQBIT {
private:
    int n;
    BinaryIndexedTree<T> bit1, bit2;
    CumulativeSum<T> cs;

public:
    RAQRSQBIT(int n_) : n(n_), bit1(n), bit2(n), cs(std::vector<T>(n, 1)) {}
    RAQRSQBIT(const std::vector<T>& v) : n(v.size()), bit1(n), bit2(n), cs(v) {}
    void apply(int l, int r, T x) {
        assert(0 <= l && l <= r && r <= n);
        bit1.apply(l, x);
        bit2.apply(l, -x * cs.prod(0, l));
        if (r != n) {
            bit1.apply(r, -x);
            bit2.apply(r, x * cs.prod(0, r));
        }
    }
    void apply(int k, T x) { apply(k, k + 1, x); }
    T prod(int k) const { return bit1.prod(k) * cs.prod(0, k) + bit2.prod(k); }
    T prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= n);
        return prod(r) - prod(l);
    }
    T get(int k) const { return prod(k, k + 1); }
    void set(int k, T x) { apply(k, x - get(k)); }

    void add(int l, int r, T x) { apply(l, r, x); }
    void add(int k, T x) { apply(k, x); }
    T sum(int k) const { return get(k); }
};

/**
 * @brief BinaryIndexedTree(FenwickTree, BIT)
 * @docs docs/data-struct/segment/BinaryIndexedTree.md
 */
#line 2 "graph/Graph.hpp"

#line 4 "graph/Graph.hpp"

template<class T = int> struct edge {
    int from, to;
    T cost;
    int idx;
    edge() : from(-1), to(-1) {}
    edge(int f, int t, const T& c = 1, int i = -1)
        : from(f), to(t), cost(c), idx(i) {}
    edge(int f, int t, T&& c, int i = -1)
        : from(f), to(t), cost(std::move(c)), idx(i) {}
    operator int() const { return to; }
    friend bool operator<(const edge<T>& lhs, const edge<T>& rhs) {
        return lhs.cost < rhs.cost;
    }
    friend bool operator>(const edge<T>& lhs, const edge<T>& rhs) {
        return lhs.cost > rhs.cost;
    }
};

template<class T = int> using Edges = std::vector<edge<T>>;
template<class T = int> using GMatrix = std::vector<std::vector<T>>;

template<class T = int> class Graph : public std::vector<std::vector<edge<T>>> {
private:
    using Base = std::vector<std::vector<edge<T>>>;

public:
    int edge_id = 0;
    using Base::Base;
    int edge_size() const { return edge_id; }
    int add_edge(int a, int b, const T& c, bool is_directed = false) {
        assert(0 <= a && a < (int)this->size());
        assert(0 <= b && b < (int)this->size());
        (*this)[a].emplace_back(a, b, c, edge_id);
        if (!is_directed) (*this)[b].emplace_back(b, a, c, edge_id);
        return edge_id++;
    }
    int add_edge(int a, int b, bool is_directed = false) {
        assert(0 <= a && a < (int)this->size());
        assert(0 <= b && b < (int)this->size());
        (*this)[a].emplace_back(a, b, 1, edge_id);
        if (!is_directed) (*this)[b].emplace_back(b, a, 1, edge_id);
        return edge_id++;
    }
};

template<class T> GMatrix<T> ListToMatrix(const Graph<T>& G) {
    const int N = G.size();
    auto res = make_vec<T>(N, N, infinity<T>::value);
    rep (i, N) res[i][i] = 0;
    rep (i, N) {
        for (const auto& e : G[i]) res[i][e.to] = e.cost;
    }
    return res;
}

template<class T> Edges<T> UndirectedListToEdges(const Graph<T>& G) {
    const int V = G.size();
    const int E = G.edge_size();
    Edges<T> Ed(E);
    rep (i, V) {
        for (const auto& e : G[i]) Ed[e.idx] = e;
    }
    return Ed;
}

template<class T> Edges<T> DirectedListToEdges(const Graph<T>& G) {
    const int V = G.size();
    const int E = std::accumulate(
        all(G), 0, [](int a, const std::vector<edge<T>>& v) -> int {
            return a + v.size();
        });
    Edges<T> Ed(G.edge_size());
    Ed.reserve(E);
    rep (i, V) {
        for (const auto& e : G[i]) {
            if (Ed[e.idx] == -1) Ed[e.idx] = e;
            else Ed.push_back(e);
        }
    }
    return Ed;
}

template<class T> Graph<T> ReverseGraph(const Graph<T>& G) {
    const int V = G.size();
    Graph<T> res(V);
    rep (i, V) {
        for (const auto& e : G[i]) {
            res[e.to].emplace_back(e.to, e.from, e.cost, e.idx);
        }
    }
    res.edge_id = G.edge_size();
    return res;
}


struct unweighted_edge {
    template<class... Args> unweighted_edge(const Args&...) {}
    operator int() { return 1; }
};

using UnweightedGraph = Graph<unweighted_edge>;

/**
 * @brief Graph-template
 * @docs docs/graph/Graph.md
 */
#line 2 "graph/tree/ContourQuery.hpp"

#line 2 "graph/tree/TreeCentroid.hpp"

#line 5 "graph/tree/TreeCentroid.hpp"

template<class T> class TreeCentroids {
private:
    int n;
    const Graph<T>& G;
    std::vector<int> sz;
    std::vector<int> cent;
    int dfs(int v, int p) {
        for (const auto& e : G[v]) {
            if (e.to == p) continue;
            sz[v] += dfs(e.to, v);
        }
        return sz[v];
    }
    void init() {
        n = G.size();
        sz.assign(n, 1);
        int s = dfs(0, -1);
        int v = 0, p = -1;
        while (true) {
            bool ok = true;
            for (const auto& e : G[v]) {
                if (e.to == p) continue;
                if (sz[e.to] * 2 > s) {
                    p = v;
                    v = e.to;
                    ok = false;
                    break;
                }
                if (sz[e.to] * 2 == s) {
                    cent = {v, e.to};
                    return;
                }
            }
            if (ok) {
                cent = {v};
                return;
            }
        }
    }

public:
    TreeCentroids(const Graph<T>& G) : G(G) { init(); }
    bool has_one_centroid() const { return cent.size() == 1; }
    std::vector<int> get() { return cent; }
};

template<class T> class CentroidDecomposition {
private:
    int n;
    const Graph<T>& G;
    std::vector<bool> seen;
    std::vector<int> sz;
    int root;
    UnweightedGraph C;
    int dfs(int v, int p) {
        sz[v] = 1;
        for (const auto& e : G[v]) {
            if (e.to == p) continue;
            if (seen[e.to]) continue;
            sz[v] += dfs(e.to, v);
        }
        return sz[v];
    }
    void init() {
        n = G.size();
        seen.assign(n, false);
        sz.assign(n, 1);
        std::vector<std::pair<int, int>> st = {{0, -1}};
        st.reserve(n);
        C = UnweightedGraph(n);
        while (!st.empty()) {
            int v = st.back().first, vp = st.back().second;
            st.pop_back();
            int s = dfs(v, -1);
            int p = -1;
            while (true) {
                bool ok = true;
                for (const auto& e : G[v]) {
                    if (e.to == p) continue;
                    if (seen[e.to]) continue;
                    if (sz[e.to] * 2 > s) {
                        p = v;
                        v = e.to;
                        ok = false;
                        break;
                    }
                }
                if (ok) break;
            }
            seen[v] = true;
            if (vp != -1) C.add_edge(vp, v, true);
            else root = v;
            for (const auto& e : G[v]) {
                if (seen[e.to]) continue;
                st.emplace_back(e.to, v);
            }
        }
    }

public:
    CentroidDecomposition(const Graph<T>& G) : G(G) { init(); }
    int get_root() { return root; }
    const UnweightedGraph& get() const& { return C; }
    UnweightedGraph get() && { return std::move(C); }
};

/**
 * @brief TreeCentroid(木の重心)
 * @docs docs/graph/tree/TreeCentroid.md
 */
#line 6 "graph/tree/ContourQuery.hpp"

template<class T, bool weighted = false> class ContourQuery {
private:
    int n;
    const Graph<T>& G;
    UnweightedGraph H;
    int root;

    std::vector<int> par, dep;
    std::vector<std::vector<T>> dist;
    std::queue<std::pair<int, T>> que;
    std::vector<std::vector<std::pair<T, int>>> vt;
    std::vector<std::vector<std::vector<std::pair<T, int>>>> ct;
    std::vector<std::vector<int>> cpar, idx, rdx1, rdx2, ddx1;
    std::vector<std::vector<std::vector<int>>> ddx2, ddx3, ddx4;

    void build_dfs(int v, int p, int d) {
        par[v] = p;
        dep[v] = d;
        for (auto e : H[v]) build_dfs(e.to, v, d + 1);
    }

    void dfs(int v) {
        int d = dep[v];
        vt[v].emplace_back(0, v);
        ct[v].resize(G[v].size());
        cpar[v][d] = v;
        dist[v][d] = 0;
        rep (i, G[v].size()) {
            const auto& e = G[v][i];
            if (dep[e.to] < d) continue;
            cpar[e.to][d] = i;
            dist[e.to][d] = e.cost;
            que.emplace(e.to, e.cost);
        }
        while (!que.empty()) {
            auto [u, d2] = que.front();
            que.pop();
            int c = cpar[u][d];
            vt[v].emplace_back(d2, u);
            ct[v][c].emplace_back(d2, u);
            rep (i, G[u].size()) {
                const auto& e = G[u][i];
                if (dep[e.to] < d) continue;
                if (cpar[e.to][d] != -1) continue;
                cpar[e.to][d] = c;
                dist[e.to][d] = d2 + e.cost;
                que.emplace(e.to, d2 + e.cost);
            }
        }
        if IF_CONSTEXPR (weighted) {
            std::sort(all(vt[v]));
            for (auto& ctv : ct[v]) std::sort(all(ctv));
        }
        for (auto e : H[v]) dfs(e.to);
    }

public:
    template<class F> ContourQuery(const Graph<T>& G, F&& f) : G(G) {
        n = G.size();
        CentroidDecomposition<T> cd(G);
        root = cd.get_root();
        H = cd.get();

        par.assign(n, -1);
        dep.assign(n, -1);
        build_dfs(root, -1, 0);
        int h = *std::max_element(all(dep)) + 1;
        vt.assign(n, {});
        ct.assign(n, {});
        cpar.assign(n, std::vector<int>(h, -1));
        dist.assign(n, std::vector<T>(h, -1));
        dfs(root);

        rdx1.assign(n, std::vector<int>(h, -1));
        rdx2.assign(n, std::vector<int>(h, -1));
        std::vector<std::vector<int>> dat(2 * n);
        rep (i, n) {
            dat[i].resize(vt[i].size());
            rep (j, vt[i].size()) {
                dat[i][j] = vt[i][j].second;
                rdx1[vt[i][j].second][dep[i]] = j;
            }
        }
        idx.resize(n);
        int cnt = n;
        rep (i, n) {
            idx[i].resize(ct[i].size());
            rep (j, ct[i].size()) {
                if (ct[i][j].empty()) continue;
                dat[cnt].resize(ct[i][j].size());
                rep (k, ct[i][j].size()) {
                    dat[cnt][k] = ct[i][j][k].second;
                    rdx2[ct[i][j][k].second][dep[i]] = k;
                }
                idx[i][j] = cnt++;
            }
        }
        f(dat);
        if IF_CONSTEXPR (weighted) {
            ddx2.resize(n);
            rep (i, n) {
                ddx2[i].resize(ct[i].size());
                rep (j, 1, vt[i].size()) {
                    ddx2[i][cpar[vt[i][j].second][dep[i]]].push_back(j);
                }
            }
        }
        else {
            ddx1.resize(n);
            rep (i, n) {
                T m = vt[i].back().first;
                ddx1[i].assign(m + 1, -1);
                rep (j, vt[i].size()) {
                    if (ddx1[i][vt[i][j].first] == -1) {
                        ddx1[i][vt[i][j].first] = j;
                    }
                }
            }
            ddx2.resize(n);
            ddx3.resize(n);
            ddx4.resize(n);
            rep (i, n) {
                ddx2[i].resize(ct[i].size());
                ddx3[i].resize(ct[i].size());
                ddx4[i].resize(ct[i].size());
                rep (j, ct[i].size()) {
                    if (ct[i][j].empty()) continue;
                    T m = ct[i][j].back().first;
                    ddx2[i][j].assign(m + 1, -1);
                    ddx3[i][j].assign(m + 1, -1);
                    ddx4[i][j].assign(m + 1, -1);
                    rep (k, ct[i][j].size()) {
                        if (ddx4[i][j][ct[i][j][k].first] == -1) {
                            ddx4[i][j][ct[i][j][k].first] = k;
                        }
                    }
                }
                rep (j, 1, vt[i].size()) {
                    int cp = cpar[vt[i][j].second][dep[i]];
                    if (ddx2[i][cp][vt[i][j].first] == -1) {
                        ddx2[i][cp][vt[i][j].first] = j;
                    }
                    ddx3[i][cp][vt[i][j].first] = j;
                }
            }
        }
    }
    template<class F> void vertex(int v, F&& f) const {
        int d = dep[v];
        f(v, 0);
        int u = v;
        while (d > 0) {
            --d;
            int p = par[u];
            int cp = cpar[u][d];
            f(p, rdx1[v][d]);
            f(idx[p][cp], rdx2[v][d]);
            u = p;
        }
    }
    template<class F> void contour(int v, T k, F&& f) const {
        if IF_CONSTEXPR (weighted) {
            int itrl =
                std::lower_bound(all(vt[v]), std::pair(k, -1)) - vt[v].begin();
            int itrr =
                std::lower_bound(all(vt[v]), std::pair(k, n)) - vt[v].begin();
            f(v, itrl, itrr);
        }
        else {
            if (k < (T)ddx1[v].size()) {
                int l = ddx1[v][k];
                int r =
                    k + 1 < (T)ddx1[v].size() ? ddx1[v][k + 1] : vt[v].size();
                f(v, l, r);
            }
        }
        int d = dep[v];
        int u = v;
        while (d > 0) {
            --d;
            k -= dist[v][d];
            int p = par[u];
            int cp = cpar[u][d];
            if IF_CONSTEXPR (weighted) {
                if (0 <= k) {
                    int l = std::lower_bound(all(vt[p]), std::pair(k, -1)) -
                            vt[p].begin();
                    int r = std::lower_bound(all(vt[p]), std::pair(k, n)) -
                            vt[p].begin();
                    int l2 =
                        std::lower_bound(all(ct[p][cp]), std::pair(k, -1)) -
                        ct[p][cp].begin();
                    int r2 = std::lower_bound(all(ct[p][cp]), std::pair(k, n)) -
                             ct[p][cp].begin();
                    if (l2 == r2) f(p, l, r);
                    else {
                        if (l2 < ct[p][cp].size()) f(p, l, ddx2[p][cp][l2]);
                        if (r2 < ct[p][cp].size()) f(p, ddx3[p][cp][r2], r);
                    }
                }
            }
            else {
                if (0 <= k && k < (T)ddx1[p].size()) {
                    int l = ddx1[p][k];
                    int r = k + 1 < (T)ddx1[p].size() ? ddx1[p][k + 1]
                                                      : vt[p].size();
                    if (k < (int)ddx2[p][cp].size()) {
                        int l2 = ddx2[p][cp][k];
                        int r2 = ddx3[p][cp][k] + 1;
                        f(p, l, l2);
                        f(p, r2, r);
                    }
                    else {
                        f(p, l, r);
                    }
                }
            }
            k += dist[v][d];
            u = p;
        }
    }
    template<class F, class G>
    void range_contour(int v, T k, F&& f, G&& g) const {
        if IF_CONSTEXPR (weighted) {
            int itrr =
                std::lower_bound(all(vt[v]), std::pair(k, -1)) - vt[v].begin();
            f(v, itrr);
        }
        else {
            int r = k < (T)ddx1[v].size() ? ddx1[v][k] : vt[v].size();
            f(v, r);
        }
        int d = dep[v];
        int u = v;
        while (d > 0) {
            --d;
            k -= dist[v][d];
            int p = par[u];
            int cp = cpar[u][d];
            if (0 < k) {
                if IF_CONSTEXPR (weighted) {
                    int r = std::lower_bound(all(vt[p]), std::pair(k, -1)) -
                            vt[p].begin();
                    f(p, r);
                    int r2 =
                        std::lower_bound(all(ct[p][cp]), std::pair(k, -1)) -
                        ct[p][cp].begin();
                    g(idx[p][cp], r2);
                }
                else {
                    int r = k < (T)ddx1[p].size() ? ddx1[p][k] : vt[p].size();
                    f(p, r);
                    int r2 = k < (T)ddx4[p][cp].size() ? ddx4[p][cp][k]
                                                       : ct[p][cp].size();
                    g(idx[p][cp], r2);
                }
            }
            k += dist[v][d];
            u = p;
        }
    }
    template<class F, class G>
    void range_contour(int v, T l, T r, F&& f, G&& g) const {
        range_contour(v, l, g, f);
        range_contour(v, r, f, g);
    }
};
#line 6 "test/yosupo/tree/vertex_get_range_contour_add_on_tree.test.cpp"
using namespace std;
int main() {
    int N, Q; scan >> N >> Q;
    vector<ll> A(N); scan >> A;
    Graph<int> G(N);
    rep (N - 1) {
        int a, b; scan >> a >> b;
        G.add_edge(a, b);
    }
    vector<RAQBIT<ll>> bit;
    ContourQuery cq(G, [&](auto v) {
        rep (i, v.size()) bit.emplace_back(v[i].size());
    });
    rep (Q) {
        int t; scan >> t;
        if (t == 0) {
            int p, l, r, x; scan >> p >> l >> r >> x;
            cq.range_contour(p, l, r, [&](int p, int r) { bit[p].add(0, r, x); }, [&](int p, int r) { bit[p].add(0, r, -x); });
        }
        else {
            int p; scan >> p;
            ll ans = A[p];
            cq.vertex(p, [&](int p, int k) { ans += bit[p].get(k); });
            prints(ans);
        }
    }
}
Back to top page