This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub shiomusubi496/library
#define PROBLEM "https://judge.yosupo.jp/problem/rooted_tree_isomorphism_classification" #include "../../../other/template.hpp" #include "../../../graph/Graph.hpp" #include "../../../graph/tree/TreeHash.hpp" using namespace std; using mint = modint61; int main() { int N; scan >> N; Graph<int> G(N); rep (i, 1, N) { int p; scan >> p; G.add_edge(p, i); } TreeHash th; auto h = th.get_hash(G); map<ull, vector<int>> mp; rep (i, N) mp[h[i].get()].push_back(i); vector<int> ans(N); int cnt = 0; for (const auto& [_, v] : mp) { for (int i : v) ans[i] = cnt; ++cnt; } prints(cnt); prints(ans); }
#line 1 "test/yosupo/tree/rooted_tree_isomorphism_classification.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/rooted_tree_isomorphism_classification" #line 2 "other/template.hpp" #include <bits/stdc++.h> #line 2 "template/macros.hpp" #line 4 "template/macros.hpp" #ifndef __COUNTER__ #define __COUNTER__ __LINE__ #endif #define OVERLOAD5(a, b, c, d, e, ...) e #define REP1_0(b, c) REP1_1(b, c) #define REP1_1(b, c) \ for (ll REP_COUNTER_##c = 0; REP_COUNTER_##c < (ll)(b); ++REP_COUNTER_##c) #define REP1(b) REP1_0(b, __COUNTER__) #define REP2(i, b) for (ll i = 0; i < (ll)(b); ++i) #define REP3(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i) #define REP4(i, a, b, c) for (ll i = (ll)(a); i < (ll)(b); i += (ll)(c)) #define rep(...) OVERLOAD5(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__) #define RREP2(i, a) for (ll i = (ll)(a)-1; i >= 0; --i) #define RREP3(i, a, b) for (ll i = (ll)(a)-1; i >= (ll)(b); --i) #define RREP4(i, a, b, c) for (ll i = (ll)(a)-1; i >= (ll)(b); i -= (ll)(c)) #define rrep(...) OVERLOAD5(__VA_ARGS__, RREP4, RREP3, RREP2)(__VA_ARGS__) #define REPS2(i, b) for (ll i = 1; i <= (ll)(b); ++i) #define REPS3(i, a, b) for (ll i = (ll)(a) + 1; i <= (ll)(b); ++i) #define REPS4(i, a, b, c) for (ll i = (ll)(a) + 1; i <= (ll)(b); i += (ll)(c)) #define reps(...) OVERLOAD5(__VA_ARGS__, REPS4, REPS3, REPS2)(__VA_ARGS__) #define RREPS2(i, a) for (ll i = (ll)(a); i > 0; --i) #define RREPS3(i, a, b) for (ll i = (ll)(a); i > (ll)(b); --i) #define RREPS4(i, a, b, c) for (ll i = (ll)(a); i > (ll)(b); i -= (ll)(c)) #define rreps(...) OVERLOAD5(__VA_ARGS__, RREPS4, RREPS3, RREPS2)(__VA_ARGS__) #define each_for(...) for (auto&& __VA_ARGS__) #define each_const(...) for (const auto& __VA_ARGS__) #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #if __cpp_if_constexpr >= 201606L #define IF_CONSTEXPR constexpr #else #define IF_CONSTEXPR #endif #define IO_BUFFER_SIZE (1 << 17) #line 2 "template/alias.hpp" #line 4 "template/alias.hpp" using ll = long long; using uint = unsigned int; using ull = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; using ld = long double; using PLL = std::pair<ll, ll>; template<class T> using prique = std::priority_queue<T, std::vector<T>, std::greater<T>>; template<class T> struct infinity { static constexpr T value = std::numeric_limits<T>::max() / 2; static constexpr T mvalue = std::numeric_limits<T>::lowest() / 2; static constexpr T max = std::numeric_limits<T>::max(); static constexpr T min = std::numeric_limits<T>::lowest(); }; #if __cplusplus <= 201402L template<class T> constexpr T infinity<T>::value; template<class T> constexpr T infinity<T>::mvalue; template<class T> constexpr T infinity<T>::max; template<class T> constexpr T infinity<T>::min; #endif #if __cpp_variable_templates >= 201304L template<class T> constexpr T INF = infinity<T>::value; #endif constexpr ll inf = infinity<ll>::value; constexpr ld EPS = 1e-8; constexpr ld PI = 3.1415926535897932384626; #line 2 "template/type_traits.hpp" #line 5 "template/type_traits.hpp" template<class T, class... Args> struct function_traits_impl { using result_type = T; template<std::size_t idx> using argument_type = typename std::tuple_element<idx, std::tuple<Args...>>::type; using argument_tuple = std::tuple<Args...>; static constexpr std::size_t arg_size() { return sizeof...(Args); } }; template<class> struct function_traits_helper; template<class Res, class Tp, class... Args> struct function_traits_helper<Res (Tp::*)(Args...)> { using type = function_traits_impl<Res, Args...>; }; template<class Res, class Tp, class... Args> struct function_traits_helper<Res (Tp::*)(Args...)&> { using type = function_traits_impl<Res, Args...>; }; template<class Res, class Tp, class... Args> struct function_traits_helper<Res (Tp::*)(Args...) const> { using type = function_traits_impl<Res, Args...>; }; template<class Res, class Tp, class... Args> struct function_traits_helper<Res (Tp::*)(Args...) const&> { using type = function_traits_impl<Res, Args...>; }; #if __cpp_noexcept_function_type >= 201510L template<class Res, class Tp, class... Args> struct function_traits_helper<Res (Tp::*)(Args...) noexcept> { using type = function_traits_impl<Res, Args...>; }; template<class Res, class Tp, class... Args> struct function_traits_helper<Res (Tp::*)(Args...)& noexcept> { using type = function_traits_impl<Res, Args...>; }; template<class Res, class Tp, class... Args> struct function_traits_helper<Res (Tp::*)(Args...) const noexcept> { using type = function_traits_impl<Res, Args...>; }; template<class Res, class Tp, class... Args> struct function_traits_helper<Res (Tp::*)(Args...) const& noexcept> { using type = function_traits_impl<Res, Args...>; }; #endif template<class F> using function_traits = typename function_traits_helper< decltype(&std::remove_reference<F>::type::operator())>::type; template<class F> using function_result_type = typename function_traits<F>::result_type; template<class F, std::size_t idx> using function_argument_type = typename function_traits<F>::template argument_type<idx>; template<class F> using function_argument_tuple = typename function_traits<F>::argument_tuple; template<class T> using is_signed_int = std::integral_constant<bool, (std::is_integral<T>::value && std::is_signed<T>::value) || std::is_same<T, i128>::value>; template<class T> using is_unsigned_int = std::integral_constant<bool, (std::is_integral<T>::value && std::is_unsigned<T>::value) || std::is_same<T, u128>::value>; template<class T> using is_int = std::integral_constant<bool, is_signed_int<T>::value || is_unsigned_int<T>::value>; template<class T> using make_signed_int = typename std::conditional< std::is_same<T, i128>::value || std::is_same<T, u128>::value, std::common_type<i128>, std::make_signed<T>>::type; template<class T> using make_unsigned_int = typename std::conditional< std::is_same<T, i128>::value || std::is_same<T, u128>::value, std::common_type<u128>, std::make_unsigned<T>>::type; template<class T, class = void> struct is_range : std::false_type {}; template<class T> struct is_range< T, decltype(all(std::declval<typename std::add_lvalue_reference<T>::type>()), (void)0)> : std::true_type {}; template<class T, bool = is_range<T>::value> struct range_rank : std::integral_constant<std::size_t, 0> {}; template<class T> struct range_rank<T, true> : std::integral_constant<std::size_t, range_rank<typename T::value_type>::value + 1> {}; template<std::size_t size> struct int_least { static_assert(size <= 128, "size must be less than or equal to 128"); using type = typename std::conditional< size <= 8, std::int_least8_t, typename std::conditional< size <= 16, std::int_least16_t, typename std::conditional< size <= 32, std::int_least32_t, typename std::conditional<size <= 64, std::int_least64_t, i128>::type>::type>::type>::type; }; template<std::size_t size> using int_least_t = typename int_least<size>::type; template<std::size_t size> struct uint_least { static_assert(size <= 128, "size must be less than or equal to 128"); using type = typename std::conditional< size <= 8, std::uint_least8_t, typename std::conditional< size <= 16, std::uint_least16_t, typename std::conditional< size <= 32, std::uint_least32_t, typename std::conditional<size <= 64, std::uint_least64_t, u128>::type>::type>::type>::type; }; template<std::size_t size> using uint_least_t = typename uint_least<size>::type; template<class T> using double_size_int = int_least<std::numeric_limits<T>::digits * 2 + 1>; template<class T> using double_size_int_t = typename double_size_int<T>::type; template<class T> using double_size_uint = uint_least<std::numeric_limits<T>::digits * 2>; template<class T> using double_size_uint_t = typename double_size_uint<T>::type; template<class T> using double_size = typename std::conditional<is_signed_int<T>::value, double_size_int<T>, double_size_uint<T>>::type; template<class T> using double_size_t = typename double_size<T>::type; #line 2 "template/in.hpp" #line 4 "template/in.hpp" #include <unistd.h> #line 8 "template/in.hpp" template<std::size_t buf_size = IO_BUFFER_SIZE, std::size_t decimal_precision = 16> class Scanner { private: template<class, class = void> struct has_scan : std::false_type {}; template<class T> struct has_scan< T, decltype(std::declval<T>().scan(std::declval<Scanner&>()), (void)0)> : std::true_type {}; int fd; int idx, sz; bool state; std::array<char, IO_BUFFER_SIZE + 1> buffer; inline char cur() { if (idx == sz) load(); if (idx == sz) { state = false; return '\0'; } return buffer[idx]; } inline void next() { if (idx == sz) load(); if (idx == sz) return; ++idx; } public: inline void load() { int len = sz - idx; if (idx < len) return; std::memcpy(buffer.begin(), buffer.begin() + idx, len); sz = len + read(fd, buffer.data() + len, buf_size - len); buffer[sz] = 0; idx = 0; } Scanner(int fd) : fd(fd), idx(0), sz(0), state(true) {} Scanner(FILE* fp) : fd(fileno(fp)), idx(0), sz(0), state(true) {} inline char scan_char() { if (idx == sz) load(); return idx == sz ? '\0' : buffer[idx++]; } Scanner ignore(int n = 1) { if (idx + n > sz) load(); idx += n; return *this; } inline void discard_space() { if (idx == sz) load(); while (('\t' <= buffer[idx] && buffer[idx] <= '\r') || buffer[idx] == ' ') { if (++idx == sz) load(); } } void scan(char& a) { discard_space(); a = scan_char(); } void scan(bool& a) { discard_space(); a = scan_char() != '0'; } void scan(std::string& a) { discard_space(); a.clear(); while (cur() != '\0' && (buffer[idx] < '\t' || '\r' < buffer[idx]) && buffer[idx] != ' ') { a += scan_char(); } } template<std::size_t len> void scan(std::bitset<len>& a) { discard_space(); if (idx + len > sz) load(); rrep (i, len) a[i] = buffer[idx++] != '0'; } template<class T, typename std::enable_if<is_signed_int<T>::value && !has_scan<T>::value>::type* = nullptr> void scan(T& a) { discard_space(); if (buffer[idx] == '-') { ++idx; if (idx + 40 > sz && (idx == sz || ('0' <= buffer[sz - 1] && buffer[sz - 1] <= '9'))) load(); a = 0; while ('0' <= buffer[idx] && buffer[idx] <= '9') { a = a * 10 - (buffer[idx++] - '0'); } } else { if (idx + 40 > sz && '0' <= buffer[sz - 1] && buffer[sz - 1] <= '9') load(); a = 0; while ('0' <= buffer[idx] && buffer[idx] <= '9') { a = a * 10 + (buffer[idx++] - '0'); } } } template<class T, typename std::enable_if<is_unsigned_int<T>::value && !has_scan<T>::value>::type* = nullptr> void scan(T& a) { discard_space(); if (idx + 40 > sz && '0' <= buffer[sz - 1] && buffer[sz - 1] <= '9') load(); a = 0; while ('0' <= buffer[idx] && buffer[idx] <= '9') { a = a * 10 + (buffer[idx++] - '0'); } } template<class T, typename std::enable_if<std::is_floating_point<T>::value && !has_scan<T>::value>::type* = nullptr> void scan(T& a) { discard_space(); bool sgn = false; if (cur() == '-') { sgn = true; next(); } a = 0; while ('0' <= cur() && cur() <= '9') { a = a * 10 + cur() - '0'; next(); } if (cur() == '.') { next(); T n = 0, d = 1; for (int i = 0; '0' <= cur() && cur() <= '9' && i < (int)decimal_precision; ++i) { n = n * 10 + cur() - '0'; d *= 10; next(); } while ('0' <= cur() && cur() <= '9') next(); a += n / d; } if (sgn) a = -a; } private: template<std::size_t i, class... Args> void scan(std::tuple<Args...>& a) { if IF_CONSTEXPR (i < sizeof...(Args)) { scan(std::get<i>(a)); scan<i + 1, Args...>(a); } } public: template<class... Args> void scan(std::tuple<Args...>& a) { scan<0, Args...>(a); } template<class T, class U> void scan(std::pair<T, U>& a) { scan(a.first); scan(a.second); } template<class T, typename std::enable_if<is_range<T>::value && !has_scan<T>::value>::type* = nullptr> void scan(T& a) { for (auto&& i : a) scan(i); } template<class T, typename std::enable_if<has_scan<T>::value>::type* = nullptr> void scan(T& a) { a.scan(*this); } void operator()() {} template<class Head, class... Args> void operator()(Head& head, Args&... args) { scan(head); operator()(args...); } template<class T> Scanner& operator>>(T& a) { scan(a); return *this; } explicit operator bool() const { return state; } friend Scanner& getline(Scanner& scan, std::string& a) { a.erase(); char c; if ((c = scan.scan_char()) == '\n' || c == '\0') return scan; a += c; while ((c = scan.scan_char()) != '\n' && c != '\0') a += c; scan.state = true; return scan; } }; Scanner<> scan(0); #line 2 "template/out.hpp" #line 8 "template/out.hpp" struct NumberToString { char buf[10000][4]; constexpr NumberToString() : buf{} { rep (i, 10000) { int n = i; rrep (j, 4) { buf[i][j] = (char)('0' + n % 10); n /= 10; } } } } constexpr precalc_number_to_string; template<std::size_t buf_size = IO_BUFFER_SIZE, bool debug = false> class Printer { private: template<class, bool = debug, class = void> struct has_print : std::false_type {}; template<class T> struct has_print<T, false, decltype(std::declval<T>().print(std::declval<Printer&>()), (void)0)> : std::true_type {}; template<class T> struct has_print<T, true, decltype(std::declval<T>().debug(std::declval<Printer&>()), (void)0)> : std::true_type {}; int fd; std::size_t idx; std::array<char, buf_size> buffer; std::size_t decimal_precision; public: inline void print_char(char c) { #if SHIO_LOCAL buffer[idx++] = c; if (idx == buf_size) flush(); #else if IF_CONSTEXPR (!debug) { buffer[idx++] = c; if (idx == buf_size) flush(); } #endif } inline void flush() { idx = write(fd, buffer.begin(), idx); idx = 0; } Printer(int fd) : fd(fd), idx(0), decimal_precision(16) {} Printer(FILE* fp) : fd(fileno(fp)), idx(0), decimal_precision(16) {} ~Printer() { flush(); } void set_decimal_precision(std::size_t decimal_precision) { this->decimal_precision = decimal_precision; } void print(char c) { if IF_CONSTEXPR (debug) print_char('\''); print_char(c); if IF_CONSTEXPR (debug) print_char('\''); } void print(bool b) { print_char((char)(b + '0')); } void print(const char* a) { if IF_CONSTEXPR (debug) print_char('"'); for (; *a != '\0'; ++a) print_char(*a); if IF_CONSTEXPR (debug) print_char('"'); } template<std::size_t len> void print(const char (&a)[len]) { if IF_CONSTEXPR (debug) print_char('"'); for (auto i : a) print_char(i); if IF_CONSTEXPR (debug) print_char('"'); } void print(const std::string& a) { if IF_CONSTEXPR (debug) print_char('"'); for (auto i : a) print_char(i); if IF_CONSTEXPR (debug) print_char('"'); } template<std::size_t len> void print(const std::bitset<len>& a) { rrep (i, len) print_char((char)(a[i] + '0')); } template<class T, typename std::enable_if<is_int<T>::value && !has_print<T>::value>::type* = nullptr> void print(T a) { if (!a) { print_char('0'); return; } if IF_CONSTEXPR (is_signed_int<T>::value) { if (a < 0) { print_char('-'); using U = typename make_unsigned_int<T>::type; print(static_cast<U>(-static_cast<U>(a))); return; } } if (idx + 40 >= buf_size) flush(); static char s[40]; int t = 40; while (a >= 10000) { int i = a % 10000; a /= 10000; t -= 4; std::memcpy(s + t, precalc_number_to_string.buf[i], 4); } if (a >= 1000) { std::memcpy(buffer.begin() + idx, precalc_number_to_string.buf[a], 4); idx += 4; } else if (a >= 100) { std::memcpy(buffer.begin() + idx, precalc_number_to_string.buf[a] + 1, 3); idx += 3; } else if (a >= 10) { std::memcpy(buffer.begin() + idx, precalc_number_to_string.buf[a] + 2, 2); idx += 2; } else { buffer[idx++] = '0' | a; } std::memcpy(buffer.begin() + idx, s + t, 40 - t); idx += 40 - t; } template<class T, typename std::enable_if<std::is_floating_point<T>::value && !has_print<T>::value>::type* = nullptr> void print(T a) { if (a == std::numeric_limits<T>::infinity()) { print("inf"); return; } if (a == -std::numeric_limits<T>::infinity()) { print("-inf"); return; } if (std::isnan(a)) { print("nan"); return; } if (a < 0) { print_char('-'); a = -a; } T b = a; if (b < 1) { print_char('0'); } else { std::string s; while (b >= 1) { s += (char)('0' + (int)std::fmod(b, 10.0)); b /= 10; } for (auto i = s.rbegin(); i != s.rend(); ++i) print_char(*i); } print_char('.'); rep (decimal_precision) { a *= 10; print_char((char)('0' + (int)std::fmod(a, 10.0))); } } private: template<std::size_t i, class... Args> void print(const std::tuple<Args...>& a) { if IF_CONSTEXPR (i < sizeof...(Args)) { if IF_CONSTEXPR (debug) print_char(','); print_char(' '); print(std::get<i>(a)); print<i + 1, Args...>(a); } } public: template<class... Args> void print(const std::tuple<Args...>& a) { if IF_CONSTEXPR (debug) print_char('('); if IF_CONSTEXPR (sizeof...(Args) != 0) print(std::get<0>(a)); print<1, Args...>(a); if IF_CONSTEXPR (debug) print_char(')'); } template<class T, class U> void print(const std::pair<T, U>& a) { if IF_CONSTEXPR (debug) print_char('('); print(a.first); if IF_CONSTEXPR (debug) print_char(','); print_char(' '); print(a.second); if IF_CONSTEXPR (debug) print_char(')'); } template<class T, typename std::enable_if<is_range<T>::value && !has_print<T>::value>::type* = nullptr> void print(const T& a) { if IF_CONSTEXPR (debug) print_char('{'); for (auto i = std::begin(a); i != std::end(a); ++i) { if (i != std::begin(a)) { if IF_CONSTEXPR (debug) print_char(','); print_char(' '); } print(*i); } if IF_CONSTEXPR (debug) print_char('}'); } template<class T, typename std::enable_if<has_print<T>::value && !debug>::type* = nullptr> void print(const T& a) { a.print(*this); } template<class T, typename std::enable_if<has_print<T>::value && debug>::type* = nullptr> void print(const T& a) { a.debug(*this); } void operator()() {} template<class Head, class... Args> void operator()(const Head& head, const Args&... args) { print(head); operator()(args...); } template<class T> Printer& operator<<(const T& a) { print(a); return *this; } Printer& operator<<(Printer& (*pf)(Printer&)) { return pf(*this); } }; template<std::size_t buf_size, bool debug> Printer<buf_size, debug>& endl(Printer<buf_size, debug>& pr) { pr.print_char('\n'); pr.flush(); return pr; } template<std::size_t buf_size, bool debug> Printer<buf_size, debug>& flush(Printer<buf_size, debug>& pr) { pr.flush(); return pr; } struct SetPrec { int n; template<class Pr> void print(Pr& pr) const { pr.set_decimal_precision(n); } template<class Pr> void debug(Pr& pr) const { pr.set_decimal_precision(n); } }; SetPrec setprec(int n) { return SetPrec{n}; }; Printer<> print(1), eprint(2); void prints() { print.print_char('\n'); } template<class T> auto prints(const T& v) -> decltype(print << v, (void)0) { print << v; print.print_char('\n'); } template<class Head, class... Tail> auto prints(const Head& head, const Tail&... tail) -> decltype(print << head, (void)0) { print << head; print.print_char(' '); prints(tail...); } Printer<IO_BUFFER_SIZE, true> debug(1), edebug(2); void debugs() { debug.print_char('\n'); } template<class T> auto debugs(const T& v) -> decltype(debug << v, (void)0) { debug << v; debug.print_char('\n'); } template<class Head, class... Tail> auto debugs(const Head& head, const Tail&... tail) -> decltype(debug << head, (void)0) { debug << head; debug.print_char(' '); debugs(tail...); } #line 2 "template/bitop.hpp" #line 6 "template/bitop.hpp" namespace bitop { #define KTH_BIT(b, k) (((b) >> (k)) & 1) #define POW2(k) (1ull << (k)) inline ull next_combination(int n, ull x) { if (n == 0) return 1; ull a = x & -x; ull b = x + a; return (x & ~b) / a >> 1 | b; } #define rep_comb(i, n, k) \ for (ull i = (1ull << (k)) - 1; i < (1ull << (n)); \ i = bitop::next_combination((n), i)) inline constexpr int msb(ull x) { int res = x ? 0 : -1; if (x & 0xFFFFFFFF00000000) x &= 0xFFFFFFFF00000000, res += 32; if (x & 0xFFFF0000FFFF0000) x &= 0xFFFF0000FFFF0000, res += 16; if (x & 0xFF00FF00FF00FF00) x &= 0xFF00FF00FF00FF00, res += 8; if (x & 0xF0F0F0F0F0F0F0F0) x &= 0xF0F0F0F0F0F0F0F0, res += 4; if (x & 0xCCCCCCCCCCCCCCCC) x &= 0xCCCCCCCCCCCCCCCC, res += 2; return res + ((x & 0xAAAAAAAAAAAAAAAA) ? 1 : 0); } inline constexpr int ceil_log2(ull x) { return x ? msb(x - 1) + 1 : 0; } inline constexpr ull reverse(ull x) { x = ((x & 0xAAAAAAAAAAAAAAAA) >> 1) | ((x & 0x5555555555555555) << 1); x = ((x & 0xCCCCCCCCCCCCCCCC) >> 2) | ((x & 0x3333333333333333) << 2); x = ((x & 0xF0F0F0F0F0F0F0F0) >> 4) | ((x & 0x0F0F0F0F0F0F0F0F) << 4); x = ((x & 0xFF00FF00FF00FF00) >> 8) | ((x & 0x00FF00FF00FF00FF) << 8); x = ((x & 0xFFFF0000FFFF0000) >> 16) | ((x & 0x0000FFFF0000FFFF) << 16); return (x >> 32) | (x << 32); } inline constexpr ull reverse(ull x, int n) { return reverse(x) >> (64 - n); } } // namespace bitop inline constexpr int popcnt(ull x) noexcept { #if __cplusplus >= 202002L return std::popcount(x); #endif x = (x & 0x5555555555555555) + ((x >> 1) & 0x5555555555555555); x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); x = (x & 0x0f0f0f0f0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f0f0f0f0f); x = (x & 0x00ff00ff00ff00ff) + ((x >> 8) & 0x00ff00ff00ff00ff); x = (x & 0x0000ffff0000ffff) + ((x >> 16) & 0x0000ffff0000ffff); return (x & 0x00000000ffffffff) + ((x >> 32) & 0x00000000ffffffff); } #line 2 "template/func.hpp" #line 6 "template/func.hpp" template<class T, class U, class Comp = std::less<>> inline constexpr bool chmin(T& a, const U& b, Comp cmp = Comp()) noexcept(noexcept(cmp(b, a))) { return cmp(b, a) ? a = b, true : false; } template<class T, class U, class Comp = std::less<>> inline constexpr bool chmax(T& a, const U& b, Comp cmp = Comp()) noexcept(noexcept(cmp(a, b))) { return cmp(a, b) ? a = b, true : false; } inline constexpr ll gcd(ll a, ll b) { if (a < 0) a = -a; if (b < 0) b = -b; while (b) { const ll c = a; a = b; b = c % b; } return a; } inline constexpr ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } inline constexpr bool is_prime(ll N) { if (N <= 1) return false; for (ll i = 2; i * i <= N; ++i) { if (N % i == 0) return false; } return true; } inline std::vector<ll> prime_factor(ll N) { std::vector<ll> res; for (ll i = 2; i * i <= N; ++i) { while (N % i == 0) { res.push_back(i); N /= i; } } if (N != 1) res.push_back(N); return res; } inline constexpr ll my_pow(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res *= a; b >>= 1; a *= a; } return res; } inline constexpr ll mod_pow(ll a, ll b, ll mod) { assert(mod > 0); if (mod == 1) return 0; a %= mod; ll res = 1; while (b) { if (b & 1) (res *= a) %= mod; b >>= 1; (a *= a) %= mod; } return res; } inline PLL extGCD(ll a, ll b) { const ll n = a, m = b; ll x = 1, y = 0, u = 0, v = 1; ll t; while (b) { t = a / b; std::swap(a -= t * b, b); std::swap(x -= t * u, u); std::swap(y -= t * v, v); } if (x < 0) { x += m; y -= n; } return {x, y}; } inline ll mod_inv(ll a, ll mod) { ll b = mod; ll x = 1, u = 0; ll t; while (b) { t = a / b; std::swap(a -= t * b, b); std::swap(x -= t * u, u); } if (x < 0) x += mod; assert(a == 1); return x; } #line 2 "template/util.hpp" #line 6 "template/util.hpp" template<class F> class RecLambda { private: F f; public: explicit constexpr RecLambda(F&& f_) : f(std::forward<F>(f_)) {} template<class... Args> constexpr auto operator()(Args&&... args) -> decltype(f(*this, std::forward<Args>(args)...)) { return f(*this, std::forward<Args>(args)...); } }; template<class F> inline constexpr RecLambda<F> rec_lambda(F&& f) { return RecLambda<F>(std::forward<F>(f)); } template<class Head, class... Tail> struct multi_dim_vector { using type = std::vector<typename multi_dim_vector<Tail...>::type>; }; template<class T> struct multi_dim_vector<T> { using type = T; }; template<class T, class Arg> constexpr std::vector<T> make_vec(int n, Arg&& arg) { return std::vector<T>(n, std::forward<Arg>(arg)); } template<class T, class... Args> constexpr typename multi_dim_vector<Args..., T>::type make_vec(int n, Args&&... args) { return typename multi_dim_vector<Args..., T>::type( n, make_vec<T>(std::forward<Args>(args)...)); } template<class T, class Comp = std::less<T>> class compressor { private: std::vector<T> dat; Comp cmp; bool sorted = false; public: compressor() : compressor(Comp()) {} compressor(const Comp& cmp) : cmp(cmp) {} compressor(const std::vector<T>& vec, bool f = false, const Comp& cmp = Comp()) : dat(vec), cmp(cmp) { if (f) build(); } compressor(std::vector<T>&& vec, bool f = false, const Comp& cmp = Comp()) : dat(std::move(vec)), cmp(cmp) { if (f) build(); } compressor(std::initializer_list<T> il, bool f = false, const Comp& cmp = Comp()) : dat(all(il)), cmp(cmp) { if (f) build(); } void reserve(int n) { assert(!sorted); dat.reserve(n); } void push_back(const T& v) { assert(!sorted); dat.push_back(v); } void push_back(T&& v) { assert(!sorted); dat.push_back(std::move(v)); } template<class... Args> void emplace_back(Args&&... args) { assert(!sorted); dat.emplace_back(std::forward<Args>(args)...); } void push(const std::vector<T>& vec) { assert(!sorted); const int n = dat.size(); dat.resize(n + vec.size()); rep (i, vec.size()) dat[n + i] = vec[i]; } int build() { assert(!sorted); sorted = true; std::sort(all(dat), cmp); dat.erase(std::unique(all(dat), [&](const T& a, const T& b) -> bool { return !cmp(a, b) && !cmp(b, a); }), dat.end()); return dat.size(); } const T& operator[](int k) const& { assert(sorted); assert(0 <= k && k < (int)dat.size()); return dat[k]; } int get(const T& val) const { assert(sorted); auto itr = std::lower_bound(all(dat), val, cmp); assert(itr != dat.end() && !cmp(val, *itr)); return itr - dat.begin(); } int lower_bound(const T& val) const { assert(sorted); auto itr = std::lower_bound(all(dat), val, cmp); return itr - dat.begin(); } int upper_bound(const T& val) const { assert(sorted); auto itr = std::upper_bound(all(dat), val, cmp); return itr - dat.begin(); } bool contains(const T& val) const { assert(sorted); return std::binary_search(all(dat), val, cmp); } std::vector<int> pressed(const std::vector<T>& vec) const { assert(sorted); std::vector<int> res(vec.size()); rep (i, vec.size()) res[i] = get(vec[i]); return res; } void press(std::vector<T>& vec) const { assert(sorted); for (auto&& i : vec) i = get(i); } int size() const { assert(sorted); return dat.size(); } }; #line 2 "graph/Graph.hpp" #line 4 "graph/Graph.hpp" template<class T = int> struct edge { int from, to; T cost; int idx; edge() : from(-1), to(-1) {} edge(int f, int t, const T& c = 1, int i = -1) : from(f), to(t), cost(c), idx(i) {} edge(int f, int t, T&& c, int i = -1) : from(f), to(t), cost(std::move(c)), idx(i) {} operator int() const { return to; } friend bool operator<(const edge<T>& lhs, const edge<T>& rhs) { return lhs.cost < rhs.cost; } friend bool operator>(const edge<T>& lhs, const edge<T>& rhs) { return lhs.cost > rhs.cost; } }; template<class T = int> using Edges = std::vector<edge<T>>; template<class T = int> using GMatrix = std::vector<std::vector<T>>; template<class T = int> class Graph : public std::vector<std::vector<edge<T>>> { private: using Base = std::vector<std::vector<edge<T>>>; public: int edge_id = 0; using Base::Base; int edge_size() const { return edge_id; } int add_edge(int a, int b, const T& c, bool is_directed = false) { assert(0 <= a && a < (int)this->size()); assert(0 <= b && b < (int)this->size()); (*this)[a].emplace_back(a, b, c, edge_id); if (!is_directed) (*this)[b].emplace_back(b, a, c, edge_id); return edge_id++; } int add_edge(int a, int b, bool is_directed = false) { assert(0 <= a && a < (int)this->size()); assert(0 <= b && b < (int)this->size()); (*this)[a].emplace_back(a, b, 1, edge_id); if (!is_directed) (*this)[b].emplace_back(b, a, 1, edge_id); return edge_id++; } }; template<class T> GMatrix<T> ListToMatrix(const Graph<T>& G) { const int N = G.size(); auto res = make_vec<T>(N, N, infinity<T>::value); rep (i, N) res[i][i] = 0; rep (i, N) { for (const auto& e : G[i]) res[i][e.to] = e.cost; } return res; } template<class T> Edges<T> UndirectedListToEdges(const Graph<T>& G) { const int V = G.size(); const int E = G.edge_size(); Edges<T> Ed(E); rep (i, V) { for (const auto& e : G[i]) Ed[e.idx] = e; } return Ed; } template<class T> Edges<T> DirectedListToEdges(const Graph<T>& G) { const int V = G.size(); const int E = std::accumulate( all(G), 0, [](int a, const std::vector<edge<T>>& v) -> int { return a + v.size(); }); Edges<T> Ed(G.edge_size()); Ed.reserve(E); rep (i, V) { for (const auto& e : G[i]) { if (Ed[e.idx] == -1) Ed[e.idx] = e; else Ed.push_back(e); } } return Ed; } template<class T> Graph<T> ReverseGraph(const Graph<T>& G) { const int V = G.size(); Graph<T> res(V); rep (i, V) { for (const auto& e : G[i]) { res[e.to].emplace_back(e.to, e.from, e.cost, e.idx); } } res.edge_id = G.edge_size(); return res; } struct unweighted_edge { template<class... Args> unweighted_edge(const Args&...) {} operator int() { return 1; } }; using UnweightedGraph = Graph<unweighted_edge>; /** * @brief Graph-template * @docs docs/graph/Graph.md */ #line 2 "graph/tree/TreeHash.hpp" #line 2 "random/Random.hpp" #line 4 "random/Random.hpp" template<class Engine> class Random { private: Engine rnd; public: using result_type = typename Engine::result_type; Random() : Random(std::random_device{}()) {} Random(result_type seed) : rnd(seed) {} result_type operator()() { return rnd(); } result_type min() const { return rnd.min(); } result_type max() const { return rnd.max(); } template<class IntType = ll> IntType uniform(IntType l, IntType r) { static_assert(std::is_integral<IntType>::value, "template argument must be an integral type"); assert(l <= r); return std::uniform_int_distribution<IntType>{l, r}(rnd); } template<class RealType = double> RealType uniform_real(RealType l, RealType r) { static_assert(std::is_floating_point<RealType>::value, "template argument must be an floating point type"); assert(l <= r); return std::uniform_real_distribution<RealType>{l, r}(rnd); } bool uniform_bool() { return uniform<int>(0, 1) == 1; } template<class T = ll> std::pair<T, T> uniform_pair(T l, T r) { assert(l < r); T a, b; do { a = uniform<T>(l, r); b = uniform<T>(l, r); } while (a == b); if (a > b) swap(a, b); return {a, b}; } template<class T = ll> std::vector<T> choice(int n, T l, T r) { assert(l <= r); assert(T(n) <= (r - l + 1)); std::set<T> res; while ((int)res.size() < n) res.insert(uniform<T>(l, r)); return {res.begin(), res.end()}; } template<class Iter> void shuffle(const Iter& first, const Iter& last) { std::shuffle(first, last, rnd); } template<class T> std::vector<T> permutation(T n) { std::vector<T> res(n); rep (i, n) res[i] = i; shuffle(all(res)); return res; } template<class T = ll> std::vector<T> choice_shuffle(int n, T l, T r, bool sorted = true) { assert(l <= r); assert(T(n) <= (r - l + 1)); std::vector<T> res(r - l + 1); rep (i, l, r + 1) res[i - l] = i; shuffle(all(res)); res.erase(res.begin() + n, res.end()); if (sorted) sort(all(res)); return res; } }; using Random32 = Random<std::mt19937>; Random32 rand32; using Random64 = Random<std::mt19937_64>; Random64 rand64; /** * @brief Random * @docs docs/random/Random.md */ #line 2 "string/RollingHash.hpp" #line 2 "data-struct/segment/BinaryIndexedTree.hpp" #line 2 "other/monoid.hpp" #line 4 "other/monoid.hpp" namespace Monoid { template<class M, class = void> class has_value_type : public std::false_type {}; template<class M> class has_value_type<M, decltype((void)std::declval<typename M::value_type>())> : public std::true_type {}; template<class M, class = void> class has_op : public std::false_type {}; template<class M> class has_op<M, decltype((void)M::op)> : public std::true_type {}; template<class M, class = void> class has_id : public std::false_type {}; template<class M> class has_id<M, decltype((void)M::id)> : public std::true_type {}; template<class M, class = void> class has_inv : public std::false_type {}; template<class M> class has_inv<M, decltype((void)M::inv)> : public std::true_type {}; template<class M, class = void> class has_get_inv : public std::false_type {}; template<class M> class has_get_inv<M, decltype((void)M::get_inv)> : public std::true_type {}; template<class M, class = void> class has_init : public std::false_type {}; template<class M> class has_init<M, decltype((void)M::init(0, 0))> : public std::true_type {}; template<class A, class = void> class has_mul_op : public std::false_type {}; template<class A> class has_mul_op<A, decltype((void)A::mul_op)> : public std::true_type {}; template<class T, class = void> class is_semigroup : public std::false_type {}; template<class T> class is_semigroup<T, decltype(std::declval<typename T::value_type>(), (void)T::op)> : public std::true_type {}; template<class T, class = void> class is_monoid : public std::false_type {}; template<class T> class is_monoid<T, decltype(std::declval<typename T::value_type>(), (void)T::op, (void)T::id)> : public std::true_type {}; template<class T, class = void> class is_group : public std::false_type {}; template<class T> class is_group<T, decltype(std::declval<typename T::value_type>(), (void)T::op, (void)T::id, (void)T::get_inv)> : public std::true_type {}; template<class T, class = void> class is_action : public std::false_type {}; template<class T> class is_action<T, typename std::enable_if<is_monoid<typename T::M>::value && is_semigroup<typename T::E>::value && (has_op<T>::value || has_mul_op<T>::value)>::type> : public std::true_type {}; template<class T, class = void> class is_distributable_action : public std::false_type {}; template<class T> class is_distributable_action< T, typename std::enable_if<is_action<T>::value && !has_mul_op<T>::value>::type> : public std::true_type {}; template<class T> struct Sum { using value_type = T; static constexpr T op(const T& a, const T& b) { return a + b; } static constexpr T id() { return T{0}; } static constexpr T inv(const T& a, const T& b) { return a - b; } static constexpr T get_inv(const T& a) { return -a; } }; template<class T, int i = -1> struct Min { using value_type = T; static T max_value; static T op(const T& a, const T& b) { return a < b ? a : b; } static T id() { return max_value; } }; template<class T> struct Min<T, -1> { using value_type = T; static constexpr T op(const T& a, const T& b) { return a < b ? a : b; } static constexpr T id() { return infinity<T>::value; } }; template<class T> struct Min<T, -2> { using value_type = T; static constexpr T op(const T& a, const T& b) { return a < b ? a : b; } static constexpr T id() { return infinity<T>::max; } }; template<class T, int id> T Min<T, id>::max_value; template<class T, int i = -1> struct Max { using value_type = T; static T min_value; static T op(const T& a, const T& b) { return a > b ? a : b; } static T id() { return min_value; } }; template<class T> struct Max<T, -1> { using value_type = T; static constexpr T op(const T& a, const T& b) { return a > b ? a : b; } static constexpr T id() { return infinity<T>::mvalue; } }; template<class T> struct Max<T, -2> { using value_type = T; static constexpr T op(const T& a, const T& b) { return a > b ? a : b; } static constexpr T id() { return infinity<T>::min; } }; template<class T> struct Assign { using value_type = T; static constexpr T op(const T&, const T& b) { return b; } }; template<class T, int id = -1> struct AssignMin { using M = Min<T, id>; using E = Assign<T>; static constexpr T op(const T& a, const T&) { return a; } }; template<class T, int id = -1> struct AssignMax { using M = Max<T, id>; using E = Assign<T>; static constexpr T op(const T& a, const T&) { return a; } }; template<class T> struct AssignSum { using M = Sum<T>; using E = Assign<T>; static constexpr T mul_op(const T& a, int b, const T&) { return a * b; } }; template<class T, int id = -1> struct AddMin { using M = Min<T, id>; using E = Sum<T>; static constexpr T op(const T& a, const T& b) { return b + a; } }; template<class T, int id = -1> struct AddMax { using M = Max<T, id>; using E = Sum<T>; static constexpr T op(const T& a, const T& b) { return b + a; } }; template<class T> struct AddSum { using M = Sum<T>; using E = Sum<T>; static constexpr T mul_op(const T& a, int b, const T& c) { return c + a * b; } }; template<class T, int id = -1> struct ChminMin { using M = Min<T, id>; using E = Min<T>; static constexpr T op(const T& a, const T& b) { return std::min(b, a); } }; template<class T, int id = -1> struct ChminMax { using M = Max<T, id>; using E = Min<T>; static constexpr T op(const T& a, const T& b) { return std::min(b, a); } }; template<class T, int id = -1> struct ChmaxMin { using M = Min<T, id>; using E = Max<T>; static constexpr T op(const T& a, const T& b) { return std::max(b, a); } }; template<class T, int id = -1> struct ChmaxMax { using M = Max<T, id>; using E = Max<T>; static constexpr T op(const T& a, const T& b) { return std::max(b, a); } }; template<class M> struct ReverseMonoid { using value_type = typename M::value_type; static value_type op(const value_type& a, const value_type& b) { return M::op(b, a); } static value_type id() { static_assert(has_id<M>::value, "id is not defined"); return M::id(); } static value_type inv(const value_type& a, const value_type& b) { static_assert(has_inv<M>::value, "inv is not defined"); return M::inv(b, a); } static value_type get_inv(const value_type& a) { static_assert(has_get_inv<M>::value, "get_inv is not defined"); return M::get_inv(a); } }; template<class E_> struct MakeAction { using M = E_; using E = E_; using T = typename E_::value_type; static T op(const T& a, const T& b) { return E_::op(b, a); } }; } // namespace Monoid #line 5 "data-struct/segment/BinaryIndexedTree.hpp" template<class M, bool = Monoid::is_monoid<M>::value> class BinaryIndexedTree { private: using T = typename M::value_type; int n; std::vector<T> data; public: BinaryIndexedTree() : BinaryIndexedTree(0) {} BinaryIndexedTree(int n_) { init(n_); } void init(int n_) { n = n_; data.assign(n + 1, M::id()); } void apply(int k, T x) { assert(0 <= k && k < n); ++k; while (k <= n) { data[k] = M::op(data[k], x); k += k & -k; } } T prod(int k) const { assert(0 <= k && k <= n); T res = M::id(); while (k) { res = M::op(res, data[k]); k -= k & -k; } return res; } template<bool AlwaysTrue = true, typename std::enable_if<Monoid::has_inv<M>::value && AlwaysTrue>::type* = nullptr> T prod(int l, int r) const { assert(l <= r); return M::inv(prod(r), prod(l)); } T get(int k) const { return prod(k, k + 1); } void set(int k, T x) { apply(k, M::inv(x, get(k))); } }; template<class T> class BinaryIndexedTree<T, false> : public BinaryIndexedTree<Monoid::Sum<T>> { private: using Base = BinaryIndexedTree<Monoid::Sum<T>>; public: using Base::Base; void add(int k, T x) { this->apply(k, x); } T sum(int k) const { return this->prod(k); } T sum(int l, int r) const { return this->prod(l, r); } }; /** * @brief BinaryIndexedTree(FenwickTree, BIT) * @docs docs/data-struct/segment/BinaryIndexedTree.md */ #line 6 "string/RollingHash.hpp" class modint61 { private: ull val; static constexpr ull MOD = (1ull << 61) - 1; static constexpr ull MASK30 = (1ull << 30) - 1; static constexpr ull MASK31 = (1ull << 31) - 1; static constexpr ull MASK61 = MOD; static ull calc_mod(ull a) { ull res = (a & MASK61) + (a >> 61); if (res >= MOD) res -= MOD; return res; } static ull calc_multi(ull a, ull b) { ull au = a >> 31, ad = a & MASK31; ull bu = b >> 31, bd = b & MASK31; ull mid = au * bd + ad * bu; return calc_mod(((au * bu) << 1) + ((mid & MASK30) << 31) + (mid >> 30) + ad * bd); } static ull calc_add(ull a, ull b) { ull res = a + b; if (res >= MOD) res -= MOD; return res; } public: constexpr modint61() : val(0) {} template<class U, typename std::enable_if<is_signed_int<U>::value && std::numeric_limits<U>::digits <= 64>::type* = nullptr> constexpr modint61(U v) { if (v >= 0) val = calc_mod(v); else { v %= static_cast<ll>(MOD); if (v < 0) v += static_cast<ll>(MOD); val = v; } } template<class U, typename std::enable_if< is_signed_int<U>::value && 64 < std::numeric_limits<U>::digits>::type* = nullptr> constexpr modint61(U v) { v %= static_cast<ll>(MOD); if (v < 0) v += static_cast<ll>(MOD); val = v; } template<class U, typename std::enable_if<is_unsigned_int<U>::value && std::numeric_limits<U>::digits <= 64>::type* = nullptr> constexpr modint61(U v) : val(calc_mod(v)) {} template<class U, typename std::enable_if< is_unsigned_int<U>::value && 64 < std::numeric_limits<U>::digits>::type* = nullptr> constexpr modint61(U v) : val(v % MOD) {} ull get() const { return val; } static constexpr ull get_mod() { return MOD; } static modint61 raw(ull x) { modint61 res; res.val = x; return res; } modint61& operator++() { ++val; if (val == MOD) val = 0; return *this; } modint61 operator++(int) { modint61 res = *this; ++*this; return res; } modint61& operator--() { if (val == 0) val = MOD; --val; return *this; } modint61 operator--(int) { modint61 res = *this; --*this; return res; } modint61& operator+=(const modint61& other) { val += other.val; if (val >= MOD) val -= MOD; return *this; } modint61& operator-=(const modint61& other) { if (val < other.val) val += MOD; val -= other.val; return *this; } modint61& operator*=(const modint61& other) { val = calc_multi(val, other.val); return *this; } modint61 pow(ll n) const { modint61 res = raw(1), x = *this; while (n > 0) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } modint61 inv() const { return pow(MOD - 2); } modint61& operator/=(const modint61& other) { *this *= other.inv(); return *this; } friend modint61 operator+(const modint61& lhs, const modint61& rhs) { return modint61(lhs) += rhs; } friend modint61 operator-(const modint61& lhs, const modint61& rhs) { return modint61(lhs) -= rhs; } friend modint61 operator*(const modint61& lhs, const modint61& rhs) { return modint61(lhs) *= rhs; } friend modint61 operator/(const modint61& lhs, const modint61& rhs) { return modint61(lhs) /= rhs; } modint61 operator+() const { return *this; } modint61 operator-() const { return modint61() - *this; } friend bool operator==(const modint61& lhs, const modint61& rhs) { return lhs.val == rhs.val; } friend bool operator!=(const modint61& lhs, const modint61& rhs) { return lhs.val != rhs.val; } template<class Pr> void debug(Pr& a) const { a.print(val); } }; class RollingHash { private: static constexpr ull MASK31 = (1ull << 31) - 1; using mint = modint61; std::vector<mint> pows, rpows; public: void init(int n) { const int sz = pows.size(); if (sz <= n) { pows.resize(n + 1); rpows.resize(n + 1); rep (i, sz, n + 1) pows[i] = pows[i - 1] * BASE; rep (i, sz, n + 1) rpows[i] = rpows[i - 1] * RBASE; } } mint BASE, RBASE; void set_base() { BASE = mint::raw((1ull << 31) + (rand32() & MASK31)); RBASE = BASE.inv(); } mint join(mint a, mint b, ll blen) const { return a * pows[blen] + b; } class Hash { private: int n; mint BASE; std::vector<mint> hash, pows; public: Hash() = default; template<class Cont> Hash(mint b, const std::vector<mint>& p, const Cont& str) : n(str.size()), BASE(b), pows(p.begin(), p.begin() + n + 1) { hash.assign(n + 1, mint{}); rep (i, n) hash[i + 1] = hash[i] * BASE + str[i]; } mint prod(int l, int r) const { assert(0 <= l && l <= r && r <= n); return hash[r] - hash[l] * pows[r - l]; } mint all_prod() const { return hash[n]; } }; class RangeHashQuery { private: int n; mint BASE; std::vector<mint> pows, rpows; BinaryIndexedTree<mint> bit; public: RangeHashQuery() = default; template<class Cont> RangeHashQuery(mint b, const std::vector<mint>& p, const std::vector<mint>& rp, const Cont& str) : n(str.size()), BASE(b), pows(p.begin(), p.begin() + n + 1), rpows(rp.begin(), rp.begin() + n + 1), bit(n) { rep (i, n) bit.add(i, str[i] * pows[i]); } mint prod(int l, int r) const { return bit.sum(l, r) * rpows[l]; } mint all_prod() const { return bit.sum(0, n); } template<class T> void set(int k, const T& x) { bit.set(k, x * pows[k]); } }; RollingHash() { set_base(); pows.assign(1, mint::raw(1)); rpows.assign(1, mint::raw(1)); } template<class Cont> Hash get_hash(const Cont& str) { init(str.size() + 1); return Hash(BASE, pows, str); } template<class Cont> RangeHashQuery get_range_hash(const Cont& str) { init(str.size() + 1); return RangeHashQuery(BASE, pows, rpows, str); } }; /** * @brief RollingHash(ロリハ) * @docs docs/string/RollingHash.md */ #line 2 "graph/tree/ReRooting.hpp" #line 5 "graph/tree/ReRooting.hpp" template<class M, class T, class F> class ReRooting { private: using U = typename M::value_type; const F& f; int n; const Graph<T>& G; std::vector<U> init_data; std::vector<std::vector<U>> dp; std::vector<U> res; std::vector<int> par; void dfs1(int v, int p) { rep (i, G[v].size()) { const auto& e = G[v][i]; if (e.to == p) par[v] = i; else dfs1(e.to, v); } rep (i, G[v].size()) { const auto& e = G[v][i]; if (e.to == p) continue; dp[v][par[v]] = M::op(dp[v][par[v]], f(dp[e.to][par[e.to]], edge<T>{e.to, v, e.cost, e.idx})); } if (p != -1 && G[v].size() == 1) { dp[v][par[v]] = init_data[v]; } } void dfs2(int v, int p, int v_id) { std::vector<U> memo(G[v].size()); rep (i, G[v].size()) { const auto& e = G[v][i]; memo[i] = f(dp[e.to][e.to == p ? v_id : par[e.to]], edge<T>{e.to, v, e.cost, e.idx}); } dp[v][G[v].size() - 1] = M::id(); rrep (i, (int)G[v].size() - 1) { dp[v][i] = M::op(memo[i + 1], dp[v][i + 1]); } U sml = M::id(); rep (i, G[v].size()) { dp[v][i] = M::op(sml, dp[v][i]); sml = M::op(sml, std::move(memo[i])); } dp[v].back() = std::move(sml); if (G[v].size() == 1) { dp[v][p == -1 ? 0 : par[v]] = std::move(init_data[v]); } rep (i, G[v].size()) { const auto& e = G[v][i]; if (e.to != p) dfs2(e.to, v, i); } } void init() { n = G.size(); if (n == 1) { res = std::move(init_data); dp.assign(1, std::vector<U>{}); return; } dp.resize(n); rep (i, n) dp[i].assign(G[i].size() + 1, M::id()); par.resize(n); par[0] = G[0].size(); dfs1(0, -1); dfs2(0, -1, -1); res.resize(n); rep (i, n) { res[i] = std::move(dp[i].back()); dp[i].pop_back(); } } public: ReRooting(const Graph<T>& G, const F& f) : ReRooting(G, f, std::vector<U>(G.size(), M::id())) {} ReRooting(const Graph<T>& G, const F& f, const std::vector<U>& ind) : f(f), G(G), init_data(ind) { init(); } ReRooting(const Graph<T>& G, const F& f, std::vector<U>&& ind) : f(f), G(G), init_data(std::move(ind)) { init(); } const std::vector<U>& get_res() const& { return res; } std::vector<U> get_res() && { return std::move(res); } const U& operator[](int v) const& { return res[v]; } U operator[](int v) && { return std::move(res[v]); } const std::vector<std::vector<U>>& get_dp() const& { return dp; } std::vector<std::vector<U>> get_dp() && { return std::move(dp); } const U& get_dp(int v, int p_idx) const& { return dp[v][p_idx]; } U get_dp(int v, int p_idx) && { return std::move(dp[v][p_idx]); } }; template<class M, class T, class F> ReRooting<M, T, F> make_rerooting(const Graph<T>& G, const F& f) { return ReRooting<M, T, F>(G, f); } /** * @brief ReRooting(全方位木DP) * @docs docs/graph/tree/ReRooting.md */ #line 8 "graph/tree/TreeHash.hpp" class TreeHash { private: static constexpr ull MASK31 = (1ull << 31) - 1; using mint = modint61; std::vector<mint> base; void init(int n) { int m = base.size(); if (m >= n) return; base.resize(n); rep (i, m, n) base[i] = mint::raw((1ull << 31) + (rand32() & MASK31)); } template<class T> int dfs(const Graph<T>& G, std::vector<mint>& ans, int v, int p) { mint res = 1; int dep = 0; for (const auto& e : G[v]) { if (e.to == p) continue; int d = dfs(G, ans, e.to, v); chmax(dep, d + 1); if ((int)base.size() == d) { base.push_back(mint::raw((1ull << 31) + (rand32() & MASK31))); } res *= ans[e.to] + base[d]; } ans[v] = res; return dep; } struct M { using value_type = std::pair<mint, int>; static value_type id() { return {1, 0}; } static value_type op(const value_type& a, const value_type& b) { return {a.first * b.first, std::max(a.second, b.second)}; } }; template<class T> std::pair<mint, int> f(const std::pair<mint, int>& a, const edge<T>& b) { if ((int)base.size() == a.second) { base.push_back(mint::raw((1ull << 31) + (rand32() & MASK31))); } return {a.first + base[a.second], a.second + 1}; } public: template<class T> std::vector<mint> get_hash(const Graph<T>& G, int root = 0) { int n = G.size(); std::vector<mint> ans(n); dfs(G, ans, root, -1); return ans; } template<class T> std::pair<std::vector<std::vector<mint>>, std::vector<mint>> get_hash_rerooting(const Graph<T>& G) { auto f = [&](const std::pair<mint, int>& a, const edge<T>&) -> std::pair<mint, int> { if ((int)base.size() == a.second) { base.push_back(mint::raw((1ull << 31) + (rand32() & MASK31))); } return {a.first + base[a.second], a.second + 1}; }; auto rr = ReRooting<M, T, decltype(f)>(G, f); std::vector<std::vector<mint>> dp(G.size()); std::vector<mint> res(G.size()); rep (i, G.size()) { dp[i].resize(G[i].size()); rep (j, G[i].size()) dp[i][j] = rr.get_dp(i, j).first; res[i] = rr[i].first; } return {dp, res}; } }; /** * @brief TreeHash * @docs docs/graph/tree/TreeHash.md */ #line 5 "test/yosupo/tree/rooted_tree_isomorphism_classification.test.cpp" using namespace std; using mint = modint61; int main() { int N; scan >> N; Graph<int> G(N); rep (i, 1, N) { int p; scan >> p; G.add_edge(p, i); } TreeHash th; auto h = th.get_hash(G); map<ull, vector<int>> mp; rep (i, N) mp[h[i].get()].push_back(i); vector<int> ans(N); int cnt = 0; for (const auto& [_, v] : mp) { for (int i : v) ans[i] = cnt; ++cnt; } prints(cnt); prints(ans); }