library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub shiomusubi496/library

:heavy_check_mark: test/yuki/119-KPSP.test.cpp

Depends on

Code

#define PROBLEM "https://yukicoder.me/problems/no/119"
#include "../../other/template.hpp"
#include "../../graph/flow/KProjectSelectionProblem.hpp"
using namespace std;
int main() {
    int N; scan >> N;
    KProjectSelectionProblem<ll> psp(N, 3);
    rep (i, N) {
        ll b, c; scan >> b >> c;
        psp.add_profit(i, {c, 0, b});
    }
    int M; scan >> M;
    rep (M) {
        int x, y; scan >> x >> y;
        psp.add_cost(x, y, {{0, 0, 0}, {0, 0, 0}, {inf, 0, 0}});
    }
    prints(psp.max_profit().first);
}
#line 1 "test/yuki/119-KPSP.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/119"
#line 2 "other/template.hpp"

#include <bits/stdc++.h>
#line 2 "template/macros.hpp"

#line 4 "template/macros.hpp"

#ifndef __COUNTER__
#define __COUNTER__ __LINE__
#endif

#define OVERLOAD5(a, b, c, d, e, ...) e
#define REP1_0(b, c) REP1_1(b, c)
#define REP1_1(b, c)                                                           \
    for (ll REP_COUNTER_##c = 0; REP_COUNTER_##c < (ll)(b); ++REP_COUNTER_##c)
#define REP1(b) REP1_0(b, __COUNTER__)
#define REP2(i, b) for (ll i = 0; i < (ll)(b); ++i)
#define REP3(i, a, b) for (ll i = (ll)(a); i < (ll)(b); ++i)
#define REP4(i, a, b, c) for (ll i = (ll)(a); i < (ll)(b); i += (ll)(c))
#define rep(...) OVERLOAD5(__VA_ARGS__, REP4, REP3, REP2, REP1)(__VA_ARGS__)
#define RREP2(i, a) for (ll i = (ll)(a)-1; i >= 0; --i)
#define RREP3(i, a, b) for (ll i = (ll)(a)-1; i >= (ll)(b); --i)
#define RREP4(i, a, b, c) for (ll i = (ll)(a)-1; i >= (ll)(b); i -= (ll)(c))
#define rrep(...) OVERLOAD5(__VA_ARGS__, RREP4, RREP3, RREP2)(__VA_ARGS__)
#define REPS2(i, b) for (ll i = 1; i <= (ll)(b); ++i)
#define REPS3(i, a, b) for (ll i = (ll)(a) + 1; i <= (ll)(b); ++i)
#define REPS4(i, a, b, c) for (ll i = (ll)(a) + 1; i <= (ll)(b); i += (ll)(c))
#define reps(...) OVERLOAD5(__VA_ARGS__, REPS4, REPS3, REPS2)(__VA_ARGS__)
#define RREPS2(i, a) for (ll i = (ll)(a); i > 0; --i)
#define RREPS3(i, a, b) for (ll i = (ll)(a); i > (ll)(b); --i)
#define RREPS4(i, a, b, c) for (ll i = (ll)(a); i > (ll)(b); i -= (ll)(c))
#define rreps(...) OVERLOAD5(__VA_ARGS__, RREPS4, RREPS3, RREPS2)(__VA_ARGS__)

#define each_for(...) for (auto&& __VA_ARGS__)
#define each_const(...) for (const auto& __VA_ARGS__)

#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)

#if __cpp_if_constexpr >= 201606L
#define IF_CONSTEXPR constexpr
#else
#define IF_CONSTEXPR
#endif

#define IO_BUFFER_SIZE (1 << 17)
#line 2 "template/alias.hpp"

#line 4 "template/alias.hpp"

using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
using ld = long double;
using PLL = std::pair<ll, ll>;
template<class T>
using prique = std::priority_queue<T, std::vector<T>, std::greater<T>>;

template<class T> struct infinity {
    static constexpr T value = std::numeric_limits<T>::max() / 2;
    static constexpr T mvalue = std::numeric_limits<T>::lowest() / 2;
    static constexpr T max = std::numeric_limits<T>::max();
    static constexpr T min = std::numeric_limits<T>::lowest();
};

#if __cplusplus <= 201402L
template<class T> constexpr T infinity<T>::value;
template<class T> constexpr T infinity<T>::mvalue;
template<class T> constexpr T infinity<T>::max;
template<class T> constexpr T infinity<T>::min;
#endif

#if __cpp_variable_templates >= 201304L
template<class T> constexpr T INF = infinity<T>::value;
#endif

constexpr ll inf = infinity<ll>::value;
constexpr ld EPS = 1e-8;
constexpr ld PI = 3.1415926535897932384626;
#line 2 "template/type_traits.hpp"

#line 5 "template/type_traits.hpp"

template<class T, class... Args> struct function_traits_impl {
    using result_type = T;
    template<std::size_t idx>
    using argument_type =
        typename std::tuple_element<idx, std::tuple<Args...>>::type;
    using argument_tuple = std::tuple<Args...>;
    static constexpr std::size_t arg_size() { return sizeof...(Args); }
};

template<class> struct function_traits_helper;

template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...)> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...)&> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...) const> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...) const&> {
    using type = function_traits_impl<Res, Args...>;
};

#if __cpp_noexcept_function_type >= 201510L
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...) noexcept> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...)& noexcept> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...) const noexcept> {
    using type = function_traits_impl<Res, Args...>;
};
template<class Res, class Tp, class... Args>
struct function_traits_helper<Res (Tp::*)(Args...) const& noexcept> {
    using type = function_traits_impl<Res, Args...>;
};
#endif

template<class F>
using function_traits = typename function_traits_helper<
    decltype(&std::remove_reference<F>::type::operator())>::type;

template<class F>
using function_result_type = typename function_traits<F>::result_type;
template<class F, std::size_t idx>
using function_argument_type =
    typename function_traits<F>::template argument_type<idx>;
template<class F>
using function_argument_tuple = typename function_traits<F>::argument_tuple;

template<class T>
using is_signed_int =
    std::integral_constant<bool, (std::is_integral<T>::value &&
                                  std::is_signed<T>::value) ||
                                     std::is_same<T, i128>::value>;
template<class T>
using is_unsigned_int =
    std::integral_constant<bool, (std::is_integral<T>::value &&
                                  std::is_unsigned<T>::value) ||
                                     std::is_same<T, u128>::value>;
template<class T>
using is_int = std::integral_constant<bool, is_signed_int<T>::value ||
                                                is_unsigned_int<T>::value>;
template<class T>
using make_signed_int = typename std::conditional<
    std::is_same<T, i128>::value || std::is_same<T, u128>::value,
    std::common_type<i128>, std::make_signed<T>>::type;
template<class T>
using make_unsigned_int = typename std::conditional<
    std::is_same<T, i128>::value || std::is_same<T, u128>::value,
    std::common_type<u128>, std::make_unsigned<T>>::type;


template<class T, class = void> struct is_range : std::false_type {};
template<class T>
struct is_range<
    T,
    decltype(all(std::declval<typename std::add_lvalue_reference<T>::type>()),
             (void)0)> : std::true_type {};

template<class T, bool = is_range<T>::value>
struct range_rank : std::integral_constant<std::size_t, 0> {};
template<class T>
struct range_rank<T, true>
    : std::integral_constant<std::size_t,
                             range_rank<typename T::value_type>::value + 1> {};

template<std::size_t size> struct int_least {
    static_assert(size <= 128, "size must be less than or equal to 128");

    using type = typename std::conditional<
        size <= 8, std::int_least8_t,
        typename std::conditional<
            size <= 16, std::int_least16_t,
            typename std::conditional<
                size <= 32, std::int_least32_t,
                typename std::conditional<size <= 64, std::int_least64_t,
                                          i128>::type>::type>::type>::type;
};

template<std::size_t size> using int_least_t = typename int_least<size>::type;

template<std::size_t size> struct uint_least {
    static_assert(size <= 128, "size must be less than or equal to 128");

    using type = typename std::conditional<
        size <= 8, std::uint_least8_t,
        typename std::conditional<
            size <= 16, std::uint_least16_t,
            typename std::conditional<
                size <= 32, std::uint_least32_t,
                typename std::conditional<size <= 64, std::uint_least64_t,
                                          u128>::type>::type>::type>::type;
};

template<std::size_t size> using uint_least_t = typename uint_least<size>::type;

template<class T>
using double_size_int = int_least<std::numeric_limits<T>::digits * 2 + 1>;
template<class T> using double_size_int_t = typename double_size_int<T>::type;
template<class T>
using double_size_uint = uint_least<std::numeric_limits<T>::digits * 2>;
template<class T> using double_size_uint_t = typename double_size_uint<T>::type;

template<class T>
using double_size =
    typename std::conditional<is_signed_int<T>::value, double_size_int<T>,
                              double_size_uint<T>>::type;
template<class T> using double_size_t = typename double_size<T>::type;
#line 2 "template/in.hpp"

#line 4 "template/in.hpp"
#include <unistd.h>
#line 8 "template/in.hpp"

template<std::size_t buf_size = IO_BUFFER_SIZE,
         std::size_t decimal_precision = 16>
class Scanner {
private:
    template<class, class = void> struct has_scan : std::false_type {};
    template<class T>
    struct has_scan<
        T, decltype(std::declval<T>().scan(std::declval<Scanner&>()), (void)0)>
        : std::true_type {};
    int fd;
    int idx, sz;
    bool state;
    std::array<char, IO_BUFFER_SIZE + 1> buffer;
    inline char cur() {
        if (idx == sz) load();
        if (idx == sz) {
            state = false;
            return '\0';
        }
        return buffer[idx];
    }
    inline void next() {
        if (idx == sz) load();
        if (idx == sz) return;
        ++idx;
    }

public:
    inline void load() {
        int len = sz - idx;
        if (idx < len) return;
        std::memcpy(buffer.begin(), buffer.begin() + idx, len);
        sz = len + read(fd, buffer.data() + len, buf_size - len);
        buffer[sz] = 0;
        idx = 0;
    }

    Scanner(int fd) : fd(fd), idx(0), sz(0), state(true) {}
    Scanner(FILE* fp) : fd(fileno(fp)), idx(0), sz(0), state(true) {}

    inline char scan_char() {
        if (idx == sz) load();
        return idx == sz ? '\0' : buffer[idx++];
    }

    Scanner ignore(int n = 1) {
        if (idx + n > sz) load();
        idx += n;
        return *this;
    }

    inline void discard_space() {
        if (idx == sz) load();
        while (('\t' <= buffer[idx] && buffer[idx] <= '\r') ||
               buffer[idx] == ' ') {
            if (++idx == sz) load();
        }
    }
    void scan(char& a) {
        discard_space();
        a = scan_char();
    }
    void scan(bool& a) {
        discard_space();
        a = scan_char() != '0';
    }
    void scan(std::string& a) {
        discard_space();
        a.clear();
        while (cur() != '\0' && (buffer[idx] < '\t' || '\r' < buffer[idx]) &&
               buffer[idx] != ' ') {
            a += scan_char();
        }
    }
    template<std::size_t len> void scan(std::bitset<len>& a) {
        discard_space();
        if (idx + len > sz) load();
        rrep (i, len) a[i] = buffer[idx++] != '0';
    }
    template<class T,
             typename std::enable_if<is_signed_int<T>::value &&
                                     !has_scan<T>::value>::type* = nullptr>
    void scan(T& a) {
        discard_space();
        if (buffer[idx] == '-') {
            ++idx;
            if (idx + 40 > sz &&
                (idx == sz || ('0' <= buffer[sz - 1] && buffer[sz - 1] <= '9')))
                load();
            a = 0;
            while ('0' <= buffer[idx] && buffer[idx] <= '9') {
                a = a * 10 - (buffer[idx++] - '0');
            }
        }
        else {
            if (idx + 40 > sz && '0' <= buffer[sz - 1] && buffer[sz - 1] <= '9')
                load();
            a = 0;
            while ('0' <= buffer[idx] && buffer[idx] <= '9') {
                a = a * 10 + (buffer[idx++] - '0');
            }
        }
    }
    template<class T,
             typename std::enable_if<is_unsigned_int<T>::value &&
                                     !has_scan<T>::value>::type* = nullptr>
    void scan(T& a) {
        discard_space();
        if (idx + 40 > sz && '0' <= buffer[sz - 1] && buffer[sz - 1] <= '9')
            load();
        a = 0;
        while ('0' <= buffer[idx] && buffer[idx] <= '9') {
            a = a * 10 + (buffer[idx++] - '0');
        }
    }
    template<class T,
             typename std::enable_if<std::is_floating_point<T>::value &&
                                     !has_scan<T>::value>::type* = nullptr>
    void scan(T& a) {
        discard_space();
        bool sgn = false;
        if (cur() == '-') {
            sgn = true;
            next();
        }
        a = 0;
        while ('0' <= cur() && cur() <= '9') {
            a = a * 10 + cur() - '0';
            next();
        }
        if (cur() == '.') {
            next();
            T n = 0, d = 1;
            for (int i = 0;
                 '0' <= cur() && cur() <= '9' && i < (int)decimal_precision;
                 ++i) {
                n = n * 10 + cur() - '0';
                d *= 10;
                next();
            }
            while ('0' <= cur() && cur() <= '9') next();
            a += n / d;
        }
        if (sgn) a = -a;
    }

private:
    template<std::size_t i, class... Args> void scan(std::tuple<Args...>& a) {
        if IF_CONSTEXPR (i < sizeof...(Args)) {
            scan(std::get<i>(a));
            scan<i + 1, Args...>(a);
        }
    }

public:
    template<class... Args> void scan(std::tuple<Args...>& a) {
        scan<0, Args...>(a);
    }
    template<class T, class U> void scan(std::pair<T, U>& a) {
        scan(a.first);
        scan(a.second);
    }
    template<class T,
             typename std::enable_if<is_range<T>::value &&
                                     !has_scan<T>::value>::type* = nullptr>
    void scan(T& a) {
        for (auto&& i : a) scan(i);
    }
    template<class T,
             typename std::enable_if<has_scan<T>::value>::type* = nullptr>
    void scan(T& a) {
        a.scan(*this);
    }

    void operator()() {}
    template<class Head, class... Args>
    void operator()(Head& head, Args&... args) {
        scan(head);
        operator()(args...);
    }

    template<class T> Scanner& operator>>(T& a) {
        scan(a);
        return *this;
    }

    explicit operator bool() const { return state; }

    friend Scanner& getline(Scanner& scan, std::string& a) {
        a.erase();
        char c;
        if ((c = scan.scan_char()) == '\n' || c == '\0') return scan;
        a += c;
        while ((c = scan.scan_char()) != '\n' && c != '\0') a += c;
        scan.state = true;
        return scan;
    }
};

Scanner<> scan(0);
#line 2 "template/out.hpp"

#line 8 "template/out.hpp"

struct NumberToString {
    char buf[10000][4];
    constexpr NumberToString() : buf{} {
        rep (i, 10000) {
            int n = i;
            rrep (j, 4) {
                buf[i][j] = (char)('0' + n % 10);
                n /= 10;
            }
        }
    }
} constexpr precalc_number_to_string;

template<std::size_t buf_size = IO_BUFFER_SIZE, bool debug = false>
class Printer {
private:
    template<class, bool = debug, class = void>
    struct has_print : std::false_type {};
    template<class T>
    struct has_print<T, false,
                     decltype(std::declval<T>().print(std::declval<Printer&>()),
                              (void)0)> : std::true_type {};
    template<class T>
    struct has_print<T, true,
                     decltype(std::declval<T>().debug(std::declval<Printer&>()),
                              (void)0)> : std::true_type {};
    int fd;
    std::size_t idx;
    std::array<char, buf_size> buffer;

    std::size_t decimal_precision;

public:
    inline void print_char(char c) {
#if SHIO_LOCAL
        buffer[idx++] = c;
        if (idx == buf_size) flush();
#else
        if IF_CONSTEXPR (!debug) {
            buffer[idx++] = c;
            if (idx == buf_size) flush();
        }
#endif
    }
    inline void flush() {
        idx = write(fd, buffer.begin(), idx);
        idx = 0;
    }

    Printer(int fd) : fd(fd), idx(0), decimal_precision(16) {}
    Printer(FILE* fp) : fd(fileno(fp)), idx(0), decimal_precision(16) {}
    ~Printer() { flush(); }

    void set_decimal_precision(std::size_t decimal_precision) {
        this->decimal_precision = decimal_precision;
    }

    void print(char c) {
        if IF_CONSTEXPR (debug) print_char('\'');
        print_char(c);
        if IF_CONSTEXPR (debug) print_char('\'');
    }
    void print(bool b) { print_char((char)(b + '0')); }
    void print(const char* a) {
        if IF_CONSTEXPR (debug) print_char('"');
        for (; *a != '\0'; ++a) print_char(*a);
        if IF_CONSTEXPR (debug) print_char('"');
    }
    template<std::size_t len> void print(const char (&a)[len]) {
        if IF_CONSTEXPR (debug) print_char('"');
        for (auto i : a) print_char(i);
        if IF_CONSTEXPR (debug) print_char('"');
    }
    void print(const std::string& a) {
        if IF_CONSTEXPR (debug) print_char('"');
        for (auto i : a) print_char(i);
        if IF_CONSTEXPR (debug) print_char('"');
    }
    template<std::size_t len> void print(const std::bitset<len>& a) {
        rrep (i, len) print_char((char)(a[i] + '0'));
    }
    template<class T,
             typename std::enable_if<is_int<T>::value &&
                                     !has_print<T>::value>::type* = nullptr>
    void print(T a) {
        if (!a) {
            print_char('0');
            return;
        }
        if IF_CONSTEXPR (is_signed_int<T>::value) {
            if (a < 0) {
                print_char('-');
                using U = typename make_unsigned_int<T>::type;
                print(static_cast<U>(-static_cast<U>(a)));
                return;
            }
        }
        if (idx + 40 >= buf_size) flush();
        static char s[40];
        int t = 40;
        while (a >= 10000) {
            int i = a % 10000;
            a /= 10000;
            t -= 4;
            std::memcpy(s + t, precalc_number_to_string.buf[i], 4);
        }
        if (a >= 1000) {
            std::memcpy(buffer.begin() + idx, precalc_number_to_string.buf[a],
                        4);
            idx += 4;
        }
        else if (a >= 100) {
            std::memcpy(buffer.begin() + idx,
                        precalc_number_to_string.buf[a] + 1, 3);
            idx += 3;
        }
        else if (a >= 10) {
            std::memcpy(buffer.begin() + idx,
                        precalc_number_to_string.buf[a] + 2, 2);
            idx += 2;
        }
        else {
            buffer[idx++] = '0' | a;
        }
        std::memcpy(buffer.begin() + idx, s + t, 40 - t);
        idx += 40 - t;
    }
    template<class T,
             typename std::enable_if<std::is_floating_point<T>::value &&
                                     !has_print<T>::value>::type* = nullptr>
    void print(T a) {
        if (a == std::numeric_limits<T>::infinity()) {
            print("inf");
            return;
        }
        if (a == -std::numeric_limits<T>::infinity()) {
            print("-inf");
            return;
        }
        if (std::isnan(a)) {
            print("nan");
            return;
        }
        if (a < 0) {
            print_char('-');
            a = -a;
        }
        T b = a;
        if (b < 1) {
            print_char('0');
        }
        else {
            std::string s;
            while (b >= 1) {
                s += (char)('0' + (int)std::fmod(b, 10.0));
                b /= 10;
            }
            for (auto i = s.rbegin(); i != s.rend(); ++i) print_char(*i);
        }
        print_char('.');
        rep (decimal_precision) {
            a *= 10;
            print_char((char)('0' + (int)std::fmod(a, 10.0)));
        }
    }

private:
    template<std::size_t i, class... Args>
    void print(const std::tuple<Args...>& a) {
        if IF_CONSTEXPR (i < sizeof...(Args)) {
            if IF_CONSTEXPR (debug) print_char(',');
            print_char(' ');
            print(std::get<i>(a));
            print<i + 1, Args...>(a);
        }
    }

public:
    template<class... Args> void print(const std::tuple<Args...>& a) {
        if IF_CONSTEXPR (debug) print_char('(');
        if IF_CONSTEXPR (sizeof...(Args) != 0) print(std::get<0>(a));
        print<1, Args...>(a);
        if IF_CONSTEXPR (debug) print_char(')');
    }
    template<class T, class U> void print(const std::pair<T, U>& a) {
        if IF_CONSTEXPR (debug) print_char('(');
        print(a.first);
        if IF_CONSTEXPR (debug) print_char(',');
        print_char(' ');
        print(a.second);
        if IF_CONSTEXPR (debug) print_char(')');
    }
    template<class T,
             typename std::enable_if<is_range<T>::value &&
                                     !has_print<T>::value>::type* = nullptr>
    void print(const T& a) {
        if IF_CONSTEXPR (debug) print_char('{');
        for (auto i = std::begin(a); i != std::end(a); ++i) {
            if (i != std::begin(a)) {
                if IF_CONSTEXPR (debug) print_char(',');
                print_char(' ');
            }
            print(*i);
        }
        if IF_CONSTEXPR (debug) print_char('}');
    }
    template<class T, typename std::enable_if<has_print<T>::value &&
                                              !debug>::type* = nullptr>
    void print(const T& a) {
        a.print(*this);
    }
    template<class T, typename std::enable_if<has_print<T>::value &&
                                              debug>::type* = nullptr>
    void print(const T& a) {
        a.debug(*this);
    }

    void operator()() {}
    template<class Head, class... Args>
    void operator()(const Head& head, const Args&... args) {
        print(head);
        operator()(args...);
    }

    template<class T> Printer& operator<<(const T& a) {
        print(a);
        return *this;
    }

    Printer& operator<<(Printer& (*pf)(Printer&)) { return pf(*this); }
};

template<std::size_t buf_size, bool debug>
Printer<buf_size, debug>& endl(Printer<buf_size, debug>& pr) {
    pr.print_char('\n');
    pr.flush();
    return pr;
}
template<std::size_t buf_size, bool debug>
Printer<buf_size, debug>& flush(Printer<buf_size, debug>& pr) {
    pr.flush();
    return pr;
}

struct SetPrec {
    int n;
    template<class Pr> void print(Pr& pr) const { pr.set_decimal_precision(n); }
    template<class Pr> void debug(Pr& pr) const { pr.set_decimal_precision(n); }
};
SetPrec setprec(int n) { return SetPrec{n}; };

Printer<> print(1), eprint(2);

void prints() { print.print_char('\n'); }

template<class T> auto prints(const T& v) -> decltype(print << v, (void)0) {
    print << v;
    print.print_char('\n');
}

template<class Head, class... Tail>
auto prints(const Head& head, const Tail&... tail)
    -> decltype(print << head, (void)0) {
    print << head;
    print.print_char(' ');
    prints(tail...);
}

Printer<IO_BUFFER_SIZE, true> debug(1), edebug(2);

void debugs() { debug.print_char('\n'); }

template<class T> auto debugs(const T& v) -> decltype(debug << v, (void)0) {
    debug << v;
    debug.print_char('\n');
}

template<class Head, class... Tail>
auto debugs(const Head& head, const Tail&... tail)
    -> decltype(debug << head, (void)0) {
    debug << head;
    debug.print_char(' ');
    debugs(tail...);
}
#line 2 "template/bitop.hpp"

#line 6 "template/bitop.hpp"

namespace bitop {

#define KTH_BIT(b, k) (((b) >> (k)) & 1)
#define POW2(k) (1ull << (k))

inline ull next_combination(int n, ull x) {
    if (n == 0) return 1;
    ull a = x & -x;
    ull b = x + a;
    return (x & ~b) / a >> 1 | b;
}

#define rep_comb(i, n, k)                                                      \
    for (ull i = (1ull << (k)) - 1; i < (1ull << (n));                         \
         i = bitop::next_combination((n), i))

inline constexpr int msb(ull x) {
    int res = x ? 0 : -1;
    if (x & 0xFFFFFFFF00000000) x &= 0xFFFFFFFF00000000, res += 32;
    if (x & 0xFFFF0000FFFF0000) x &= 0xFFFF0000FFFF0000, res += 16;
    if (x & 0xFF00FF00FF00FF00) x &= 0xFF00FF00FF00FF00, res += 8;
    if (x & 0xF0F0F0F0F0F0F0F0) x &= 0xF0F0F0F0F0F0F0F0, res += 4;
    if (x & 0xCCCCCCCCCCCCCCCC) x &= 0xCCCCCCCCCCCCCCCC, res += 2;
    return res + ((x & 0xAAAAAAAAAAAAAAAA) ? 1 : 0);
}

inline constexpr int ceil_log2(ull x) { return x ? msb(x - 1) + 1 : 0; }

inline constexpr ull reverse(ull x) {
    x = ((x & 0xAAAAAAAAAAAAAAAA) >> 1) | ((x & 0x5555555555555555) << 1);
    x = ((x & 0xCCCCCCCCCCCCCCCC) >> 2) | ((x & 0x3333333333333333) << 2);
    x = ((x & 0xF0F0F0F0F0F0F0F0) >> 4) | ((x & 0x0F0F0F0F0F0F0F0F) << 4);
    x = ((x & 0xFF00FF00FF00FF00) >> 8) | ((x & 0x00FF00FF00FF00FF) << 8);
    x = ((x & 0xFFFF0000FFFF0000) >> 16) | ((x & 0x0000FFFF0000FFFF) << 16);
    return (x >> 32) | (x << 32);
}

inline constexpr ull reverse(ull x, int n) { return reverse(x) >> (64 - n); }

} // namespace bitop

inline constexpr int popcnt(ull x) noexcept {
#if __cplusplus >= 202002L
    return std::popcount(x);
#endif
    x = (x & 0x5555555555555555) + ((x >> 1) & 0x5555555555555555);
    x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333);
    x = (x & 0x0f0f0f0f0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f0f0f0f0f);
    x = (x & 0x00ff00ff00ff00ff) + ((x >> 8) & 0x00ff00ff00ff00ff);
    x = (x & 0x0000ffff0000ffff) + ((x >> 16) & 0x0000ffff0000ffff);
    return (x & 0x00000000ffffffff) + ((x >> 32) & 0x00000000ffffffff);
}
#line 2 "template/func.hpp"

#line 6 "template/func.hpp"

template<class T, class U, class Comp = std::less<>>
inline constexpr bool chmin(T& a, const U& b,
                            Comp cmp = Comp()) noexcept(noexcept(cmp(b, a))) {
    return cmp(b, a) ? a = b, true : false;
}
template<class T, class U, class Comp = std::less<>>
inline constexpr bool chmax(T& a, const U& b,
                            Comp cmp = Comp()) noexcept(noexcept(cmp(a, b))) {
    return cmp(a, b) ? a = b, true : false;
}

inline constexpr ll gcd(ll a, ll b) {
    if (a < 0) a = -a;
    if (b < 0) b = -b;
    while (b) {
        const ll c = a;
        a = b;
        b = c % b;
    }
    return a;
}
inline constexpr ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }

inline constexpr bool is_prime(ll N) {
    if (N <= 1) return false;
    for (ll i = 2; i * i <= N; ++i) {
        if (N % i == 0) return false;
    }
    return true;
}
inline std::vector<ll> prime_factor(ll N) {
    std::vector<ll> res;
    for (ll i = 2; i * i <= N; ++i) {
        while (N % i == 0) {
            res.push_back(i);
            N /= i;
        }
    }
    if (N != 1) res.push_back(N);
    return res;
}

inline constexpr ll my_pow(ll a, ll b) {
    ll res = 1;
    while (b) {
        if (b & 1) res *= a;
        b >>= 1;
        a *= a;
    }
    return res;
}
inline constexpr ll mod_pow(ll a, ll b, ll mod) {
    assert(mod > 0);
    if (mod == 1) return 0;
    a %= mod;
    ll res = 1;
    while (b) {
        if (b & 1) (res *= a) %= mod;
        b >>= 1;
        (a *= a) %= mod;
    }
    return res;
}

inline PLL extGCD(ll a, ll b) {
    const ll n = a, m = b;
    ll x = 1, y = 0, u = 0, v = 1;
    ll t;
    while (b) {
        t = a / b;
        std::swap(a -= t * b, b);
        std::swap(x -= t * u, u);
        std::swap(y -= t * v, v);
    }
    if (x < 0) {
        x += m;
        y -= n;
    }
    return {x, y};
}
inline ll mod_inv(ll a, ll mod) {
    ll b = mod;
    ll x = 1, u = 0;
    ll t;
    while (b) {
        t = a / b;
        std::swap(a -= t * b, b);
        std::swap(x -= t * u, u);
    }
    if (x < 0) x += mod;
    assert(a == 1);
    return x;
}
#line 2 "template/util.hpp"

#line 6 "template/util.hpp"

template<class F> class RecLambda {
private:
    F f;

public:
    explicit constexpr RecLambda(F&& f_) : f(std::forward<F>(f_)) {}
    template<class... Args>
    constexpr auto operator()(Args&&... args)
        -> decltype(f(*this, std::forward<Args>(args)...)) {
        return f(*this, std::forward<Args>(args)...);
    }
};

template<class F> inline constexpr RecLambda<F> rec_lambda(F&& f) {
    return RecLambda<F>(std::forward<F>(f));
}


template<class Head, class... Tail> struct multi_dim_vector {
    using type = std::vector<typename multi_dim_vector<Tail...>::type>;
};
template<class T> struct multi_dim_vector<T> { using type = T; };

template<class T, class Arg>
constexpr std::vector<T> make_vec(int n, Arg&& arg) {
    return std::vector<T>(n, std::forward<Arg>(arg));
}
template<class T, class... Args>
constexpr typename multi_dim_vector<Args..., T>::type make_vec(int n,
                                                               Args&&... args) {
    return typename multi_dim_vector<Args..., T>::type(
        n, make_vec<T>(std::forward<Args>(args)...));
}


template<class T, class Comp = std::less<T>> class compressor {
private:
    std::vector<T> dat;
    Comp cmp;
    bool sorted = false;

public:
    compressor() : compressor(Comp()) {}
    compressor(const Comp& cmp) : cmp(cmp) {}
    compressor(const std::vector<T>& vec, bool f = false,
               const Comp& cmp = Comp())
        : dat(vec), cmp(cmp) {
        if (f) build();
    }
    compressor(std::vector<T>&& vec, bool f = false, const Comp& cmp = Comp())
        : dat(std::move(vec)), cmp(cmp) {
        if (f) build();
    }
    compressor(std::initializer_list<T> il, bool f = false,
               const Comp& cmp = Comp())
        : dat(all(il)), cmp(cmp) {
        if (f) build();
    }
    void reserve(int n) {
        assert(!sorted);
        dat.reserve(n);
    }
    void push_back(const T& v) {
        assert(!sorted);
        dat.push_back(v);
    }
    void push_back(T&& v) {
        assert(!sorted);
        dat.push_back(std::move(v));
    }
    template<class... Args> void emplace_back(Args&&... args) {
        assert(!sorted);
        dat.emplace_back(std::forward<Args>(args)...);
    }
    void push(const std::vector<T>& vec) {
        assert(!sorted);
        const int n = dat.size();
        dat.resize(n + vec.size());
        rep (i, vec.size()) dat[n + i] = vec[i];
    }
    int build() {
        assert(!sorted);
        sorted = true;
        std::sort(all(dat), cmp);
        dat.erase(std::unique(all(dat),
                              [&](const T& a, const T& b) -> bool {
                                  return !cmp(a, b) && !cmp(b, a);
                              }),
                  dat.end());
        return dat.size();
    }
    const T& operator[](int k) const& {
        assert(sorted);
        assert(0 <= k && k < (int)dat.size());
        return dat[k];
    }
    int get(const T& val) const {
        assert(sorted);
        auto itr = std::lower_bound(all(dat), val, cmp);
        assert(itr != dat.end() && !cmp(val, *itr));
        return itr - dat.begin();
    }
    int lower_bound(const T& val) const {
        assert(sorted);
        auto itr = std::lower_bound(all(dat), val, cmp);
        return itr - dat.begin();
    }
    int upper_bound(const T& val) const {
        assert(sorted);
        auto itr = std::upper_bound(all(dat), val, cmp);
        return itr - dat.begin();
    }
    bool contains(const T& val) const {
        assert(sorted);
        return std::binary_search(all(dat), val, cmp);
    }
    std::vector<int> pressed(const std::vector<T>& vec) const {
        assert(sorted);
        std::vector<int> res(vec.size());
        rep (i, vec.size()) res[i] = get(vec[i]);
        return res;
    }
    void press(std::vector<T>& vec) const {
        assert(sorted);
        for (auto&& i : vec) i = get(i);
    }
    int size() const {
        assert(sorted);
        return dat.size();
    }
};
#line 2 "graph/flow/KProjectSelectionProblem.hpp"

#line 2 "graph/flow/ProjectSelectionProblem.hpp"

#line 2 "graph/flow/MaxFlow.hpp"

#line 4 "graph/flow/MaxFlow.hpp"

template<class T> class MaxFlow {
private:
    struct edge_ {
        int to, rev;
        T cap;
    };

    int n;
    std::vector<std::vector<edge_>> g;
    std::vector<std::pair<int, int>> pos;

public:
    struct edge {
        int from, to;
        T cap, flow;
    };

    MaxFlow() : n(0) {}
    explicit MaxFlow(int n) : n(n), g(n) {}

    int add_edge(int from, int to, T cap) {
        assert(0 <= from && from < n);
        assert(0 <= to && to < n);
        assert(0 <= cap);
        pos.emplace_back(from, (int)(g[from].size()));
        g[from].push_back({to, (int)(g[to].size()), cap});
        g[to].push_back({from, (int)(g[from].size()) - 1, T{0}});
        return (int)(pos.size()) - 1;
    }
    edge get_edge(int i) {
        int m = (int)(pos.size());
        assert(0 <= i && i < m);
        const auto& e = g[pos[i].first][pos[i].second];
        const auto& re = g[e.to][e.rev];
        return edge{pos[i].first, e.to, e.cap + re.cap, re.cap};
    }
    std::vector<edge> edges() {
        int m = (int)(pos.size());
        std::vector<edge> res(m);
        for (int i = 0; i < m; i++) res[i] = get_edge(i);
        return res;
    }
    T flow(int s, int t) { return flow(s, t, infinity<T>::max); }
    T flow(int s, int t, T flow_limit) {
        assert(0 <= s && s < n);
        assert(0 <= t && t < n);
        assert(s != t);
        T res = T{0};
        while (res < flow_limit) {
            std::vector<int> dist(n, -1);
            {
                std::queue<int> que;
                que.push(s);
                dist[s] = 0;
                while (!que.empty()) {
                    int v = que.front();
                    que.pop();
                    for (const auto& e : g[v]) {
                        if (e.cap > T{0} && dist[e.to] == -1) {
                            dist[e.to] = dist[v] + 1;
                            que.push(e.to);
                        }
                    }
                }
            }
            std::vector<int> idx(n, 0);
            T f = rec_lambda([&](auto&& self, int v, T f) -> T {
                if (v == t) return f;
                T res = 0;
                for (int& i = idx[v]; i < (int)(g[v].size()); i++) {
                    auto& e = g[v][i];
                    if (e.cap > T{0} && dist[v] + 1 == dist[e.to]) {
                        T d = self(e.to, std::min(f - res, e.cap));
                        if (d == T{0}) continue;
                        e.cap -= d;
                        g[e.to][e.rev].cap += d;
                        res += d;
                        if (res == f) return res;
                    }
                }
                return res;
            })(s, flow_limit - res);
            if (f == T{0}) break;
            res += f;
        }
        return res;
    }
    std::vector<bool> min_cut(int s) const {
        assert(0 <= s && s < n);
        std::vector<bool> visited(n);
        std::queue<int> que;
        que.push(s);
        visited[s] = true;
        while (!que.empty()) {
            int v = que.front();
            que.pop();
            for (const auto& e : g[v]) {
                if (e.cap > T{0} && !visited[e.to]) {
                    visited[e.to] = true;
                    que.push(e.to);
                }
            }
        }
        return visited;
    }
};

/**
 * @brief MaxFlow(最大流)
 * @docs docs/graph/flow/MaxFlow.md
 */
#line 5 "graph/flow/ProjectSelectionProblem.hpp"

template<class T> class ProjectSelectionProblem {
private:
    int n, naux;
    int source, sink;

public:
    using Cost0 = T;
    using Cost1 = std::array<Cost0, 2>;
    using Cost2 = std::array<Cost1, 2>;
    using Cost3 = std::array<Cost2, 2>;

private:
    Cost0 c0;
    std::vector<Cost1> c1;
    std::vector<std::tuple<int, int, Cost0>> edges;

    static constexpr Cost0 neg(Cost0 c) { return -c; }
    template<class U>
    static constexpr std::array<U, 2> neg(const std::array<U, 2>& c) {
        return {{neg(c[0]), neg(c[1])}};
    }

public:
    ProjectSelectionProblem() : ProjectSelectionProblem(0) {}
    ProjectSelectionProblem(int n)
        : n(n), naux(0), source(-1), sink(-2), c0(0), c1(n, {0, 0}) {}

    void add_cost(Cost0 c) { c0 += c; }
    void add_profit(Cost0 c) { c0 -= c; }
    void add_cost_0(int i, Cost0 c) { add_cost(i, Cost1{{c, 0}}); }
    void add_cost_1(int i, Cost0 c) { add_cost(i, Cost1{{0, c}}); }
    void add_profit_0(int i, Cost0 c) { add_cost(i, Cost1{{-c, 0}}); }
    void add_profit_1(int i, Cost0 c) { add_cost(i, Cost1{{0, -c}}); }
    void add_cost(int i, Cost1 c) {
        assert(0 <= i && i < n);
        c1[i][0] += c[0];
        c1[i][1] += c[1];
    }
    void add_profit(int i, Cost1 c) { add_cost(i, neg(c)); }

    void add_cost_01(int i, int j, Cost0 c) {
        assert(0 <= i && i < n);
        assert(0 <= j && j < n);
        assert(i != j);
        assert(c >= 0);
        edges.emplace_back(i, j, c);
    }
    // c must be submodular (c[0][0] + c[1][1] <= c[0][1] + c[1][0])
    void add_cost(int i, int j, Cost2 c) {
        assert(0 <= i && i < n);
        assert(0 <= j && j < n);
        assert(i != j);
        assert(c[0][0] + c[1][1] <= c[0][1] + c[1][0]);
        add_cost(c[0][0]);
        add_cost_1(i, c[1][0] - c[0][0]);
        add_cost_1(j, c[1][1] - c[1][0]);
        add_cost_01(i, j, c[0][1] + c[1][0] - c[0][0] - c[1][1]);
    }
    void add_profit(int i, int j, Cost2 c) { add_cost(i, j, neg(c)); }

    void add_cost_10(int i, int j, Cost0 c) { add_cost_01(j, i, c); }
    void add_cost_neq(int i, int j, Cost0 c) {
        add_cost(i, j, Cost2{{{0, c}, {c, 0}}});
    }
    void add_profit_00(int i, int j, Cost0 c) {
        add_cost(i, j, Cost2{{{-c, 0}, {0, 0}}});
    }
    void add_profit_11(int i, int j, Cost0 c) {
        add_cost(i, j, Cost2{{{0, 0}, {0, -c}}});
    }
    void add_profit_eq(int i, int j, Cost0 c) {
        add_cost(i, j, Cost2{{{-c, 0}, {0, -c}}});
    }

    template<class Cont> void add_profit_all_1(const Cont& cont, Cost0 c) {
        assert(c >= 0);
        if (cont.empty()) return add_profit(c);
        if (cont.size() == 1) return add_profit_1(cont[0], c);
        if (cont.size() == 2) return add_profit_11(cont[0], cont[1], c);
        int aux = n + naux++;
        add_profit(c);
        edges.emplace_back(aux, sink, c);
        for (int i : cont) edges.emplace_back(i, aux, c + 1);
    }
    template<class Cont> void add_profit_all_0(const Cont& cont, Cost0 c) {
        assert(c >= 0);
        if (cont.empty()) return add_profit(c);
        if (cont.size() == 1) return add_profit_0(cont[0], c);
        if (cont.size() == 2) return add_profit_00(cont[0], cont[1], c);
        int aux = n + naux++;
        add_profit(c);
        edges.emplace_back(source, aux, c);
        for (int i : cont) edges.emplace_back(aux, i, c + 1);
    }

    // c must be submodular (c[S&T] + c[S|T] <= c[S] + c[T])
    void add_cost(int i, int j, int k, Cost3 c) {
        assert(0 <= i && i < n);
        assert(0 <= j && j < n);
        assert(0 <= k && k < n);
        assert(i != j && j != k && k != i);
        const Cost0 A = c[0][0][0], B = c[0][0][1], C = c[0][1][0],
                    D = c[0][1][1], E = c[1][0][0], F = c[1][0][1],
                    G = c[1][1][0], H = c[1][1][1];
        const Cost0 P = (A + D + F + G) - (B + C + E + H);
        if (P >= 0) {
            const Cost0 P1 = F - B, P2 = G - E, P3 = D - C,
                        P12 = (C + E) - (A + G), P23 = (B + C) - (A + D),
                        P31 = (B + E) - (A + F);
            add_cost(A);
            add_cost_1(i, P1);
            add_cost_1(j, P2);
            add_cost_1(k, P3);
            add_cost_01(i, j, P12);
            add_cost_01(j, k, P23);
            add_cost_01(k, i, P31);
            add_profit_all_1(std::array<int, 3>{i, j, k}, P);
        }
        else {
            const Cost0 P1 = C - G, P2 = B - D, P3 = E - F,
                        P21 = (D + F) - (B + H), P32 = (F + G) - (E + H),
                        P13 = (D + G) - (C + H);
            add_cost(H);
            add_cost_0(i, P1);
            add_cost_0(j, P2);
            add_cost_0(k, P3);
            add_cost_01(j, i, P21);
            add_cost_01(k, j, P32);
            add_cost_01(i, k, P13);
            add_profit_all_0(std::array<int, 3>{i, j, k}, -P);
        }
    }

    std::pair<Cost0, std::vector<bool>> min_cost() {
        MaxFlow<Cost0> g(n + naux + 2);
        int s = n + naux, t = n + naux + 1;
        for (int i = 0; i < n; i++) {
            if (c1[i][0] == c1[i][1]) {
                add_cost(c1[i][0]);
            }
            else if (c1[i][0] < c1[i][1]) {
                add_cost(c1[i][0]);
                edges.emplace_back(s, i, c1[i][1] - c1[i][0]);
            }
            else {
                add_cost(c1[i][1]);
                edges.emplace_back(i, t, c1[i][0] - c1[i][1]);
            }
            c1[i][0] = c1[i][1] = 0;
        }
        for (const auto& [i, j, c] : edges) {
            int u = i == source ? s : i == sink ? t : i;
            int v = j == source ? s : j == sink ? t : j;
            g.add_edge(u, v, c);
        }
        auto f = g.flow(s, t) + c0;
        auto x = g.min_cut(s);
        x.resize(n);
        for (int i = 0; i < n; ++i) x[i] = !x[i];
        return {f, x};
    }
    std::pair<Cost0, std::vector<bool>> max_profit() {
        auto res = min_cost();
        res.first = -res.first;
        return res;
    }
};

/**
 * @brief ProjectSelectionProblem(燃やす埋める)
 * @docs docs/graph/flow/ProjectSelectionProblem.md
 */
#line 5 "graph/flow/KProjectSelectionProblem.hpp"

template<class T> class KProjectSelectionProblem {
private:
    int n;
    std::vector<int> sz;
    std::vector<std::vector<int>> xs;
    ProjectSelectionProblem<T> psp;

public:
    using Cost0 = T;
    using Cost1 = std::vector<Cost0>;
    using Cost2 = std::vector<Cost1>;

public:
    KProjectSelectionProblem(std::vector<int> sz)
        : n(sz.size()), sz(sz), xs(n) {
        int m = 0;
        rep (i, n) {
            assert(sz[i] >= 1);
            xs[i].resize(sz[i] - 1);
            rep (j, sz[i] - 1) xs[i][j] = m++;
        }
        psp = ProjectSelectionProblem<T>(m);
        rep (i, n) {
            rep (j, sz[i] - 2) {
                psp.add_cost_10(xs[i][j], xs[i][j + 1], infinity<T>::value);
            }
        }
    }
    KProjectSelectionProblem(int n, int m)
        : KProjectSelectionProblem(std::vector<int>(n, m)) {}

    void add_cost(Cost0 c) { psp.add_cost(c); }
    void add_profit(Cost0 c) { psp.add_profit(c); }

    void add_cost(int i, Cost1 c) {
        assert(0 <= i && i < n);
        assert((int)c.size() == sz[i]);
        psp.add_cost(c.back());
        rep (j, sz[i] - 1) psp.add_cost_1(xs[i][j], c[j] - c[j + 1]);
    }
    void add_profit(int i, Cost1 c) {
        for (Cost0& x : c) x = -x;
        add_cost(i, c);
    }

    // c must be monge
    void add_cost(int i, int j, Cost2 c) {
        assert(0 <= i && i < n);
        assert(0 <= j && j < n);
        assert(i != j);
        assert((int)c.size() == sz[i]);
        rep (k, sz[i]) assert((int)c[k].size() == sz[j]);

        Cost1 ci(sz[i]), cj(sz[j]);
        rep (k, sz[i]) {
            ci[k] = c[k][0];
            rep (l, sz[j]) c[k][l] -= ci[k];
        }
        rep (l, sz[j]) {
            cj[l] = c[0][l];
            rep (k, sz[i]) c[k][l] -= cj[l];
        }
        add_cost(i, ci);
        add_cost(j, cj);
        rep (k, sz[i] - 1)
            rep (l, sz[j] - 1) {
                Cost0 cij =
                    c[k][l] + c[k + 1][l + 1] - c[k][l + 1] - c[k + 1][l];
                assert(cij <= 0); // monge
                psp.add_profit_00(xs[i][k], xs[j][l], -cij);
            }
    }
    void add_profit(int i, int j, Cost2 c) {
        for (Cost1& x : c)
            for (Cost0& y : x) y = -y;
        add_cost(i, j, c);
    }

    std::pair<Cost0, std::vector<int>> min_cost() {
        auto [c, x] = psp.min_cost();
        std::vector<int> res(n);
        rep (i, n) {
            rep (j, sz[i] - 1) {
                if (!x[xs[i][j]]) ++res[i];
            }
        }
        return {c, res};
    }
    std::pair<Cost0, std::vector<int>> max_profit() {
        auto res = min_cost();
        res.first = -res.first;
        return res;
    }
};

/**
 * @brief KProjectSelectionProblem(K値燃やす埋める)
 * @docs docs/graph/flow/KProjectSelectionProblem.md
 */
#line 4 "test/yuki/119-KPSP.test.cpp"
using namespace std;
int main() {
    int N; scan >> N;
    KProjectSelectionProblem<ll> psp(N, 3);
    rep (i, N) {
        ll b, c; scan >> b >> c;
        psp.add_profit(i, {c, 0, b});
    }
    int M; scan >> M;
    rep (M) {
        int x, y; scan >> x >> y;
        psp.add_cost(x, y, {{0, 0, 0}, {0, 0, 0}, {inf, 0, 0}});
    }
    prints(psp.max_profit().first);
}
Back to top page